Submarine volcanic eruptions can result in both real and apparent changes in marine algal communities, e.g., increases in phytoplankton biomass and/or growth rates that can cover thousands of square kilometers. Satellite ocean color monitoring detects these changes as increases in chlorophyll and particulate backscattering. Detailed, high resolution analysis is needed...
Submarine volcanic eruptions can result in both real and apparent changes in marine algal communities, e.g., increases in phytoplankton biomass and/or growth rates that can cover thousands of square kilometers. Satellite ocean color monitoring detects these changes as increases in chlorophyll and particulate backscattering. Detailed, high resolution analysis is needed...
Submarine volcanic eruptions can result in both real and apparent changes in marine algal communities, e.g., increases in phytoplankton biomass and/or growth rates that can cover thousands of square kilometers. Satellite ocean color monitoring detects these changes as increases in chlorophyll and particulate backscattering. Detailed, high resolution analysis is needed...
Submarine volcanic eruptions can result in both real and apparent changes in marine algal communities, e.g., increases in phytoplankton biomass and/or growth rates that can cover thousands of square kilometers. Satellite ocean color monitoring detects these changes as increases in chlorophyll and particulate backscattering. Detailed, high resolution analysis is needed...
Submarine volcanic eruptions can result in both real and apparent changes in marine algal communities, e.g., increases in phytoplankton biomass and/or growth rates that can cover thousands of square kilometers. Satellite ocean color monitoring detects these changes as increases in chlorophyll and particulate backscattering. Detailed, high resolution analysis is needed...
Submarine volcanic eruptions can result in both real and apparent changes in marine algal communities, e.g., increases in phytoplankton biomass and/or growth rates that can cover thousands of square kilometers. Satellite ocean color monitoring detects these changes as increases in chlorophyll and particulate backscattering. Detailed, high resolution analysis is needed...
Submarine volcanic eruptions can result in both real and apparent changes in marine algal communities, e.g., increases in phytoplankton biomass and/or growth rates that can cover thousands of square kilometers. Satellite ocean color monitoring detects these changes as increases in chlorophyll and particulate backscattering. Detailed, high resolution analysis is needed...
The dynamic nature of biological hotspots, while well recognized, is not well understood. We hypothesize that
the persistence of hotspots in the northern California Current System (CCS), despite seasonal and annual changes
in the nekton community species composition, is related to associations among species and their functional redundancy.
To address...
We examined the feasibility of using a video beam
trawl system to assess behavioral responses of juvenile
flatfishes in relation to co-occurring habitat features,
most notably dissolved oxygen (DO) concentrations. Sixteen
samples were collected along a cross shelf transect in
the central Oregon coast during summer 2008. We found
that...
Submarine volcanic eruptions can result in both real and apparent changes in marine algal communities, e.g., increases in phytoplankton biomass and/or growth rates that can cover thousands of square kilometers. Satellite ocean color monitoring detects these changes as increases in chlorophyll and particulate backscattering. Detailed, high resolution analysis is needed...