Lignocellulosic biomass has potential as a renewable resource for global energy and bioproducts production. Biomass consists of three main polymers, cellulose, hemicellulose, and lignin. Cellulose is a homopolymer of glucose, while hemicellulose and lignin are heteropolymers. Lignin is primarily made of syringyl (S), guiacayl (G) and p-hydroxyphenyl (H) units. Pretreatment...
Full Text:
Ecological Engineering2
Oregon State University, Corvallis, OR 97330
Utilizing Plant Biomass: A Global
Lignocellulosic biomass has potential as a renewable resource for global energy and bioproducts production. Biomass consists of three main polymers, cellulose, hemicellulose, and lignin. Cellulose is a homopolymer of glucose, while hemicellulose and lignin are heteropolymers. Lignin is primarily made of syringyl (S), guiacayl (G) and p-hydroxyphenyl (H) units. Pretreatment...
Full Text:
Hydrolysis of Cellulosic Biomass 5/29/2015
Page 1 of 31
Impact of lignin composition on enzymatic
Light Detection and Ranging (LiDAR) remote sensing has demonstrated potential in measuring forest biomass. We assessed the ability of LiDAR to accurately estimate forest total above ground biomass (TAGB) on an individual stem basis in a conifer forest in the US Pacific Northwest region using three different computer software programs...
The issue of global climate change and an increasing interest in the reduction of fossil fuel carbon dioxide emissions by using forest biomass for energy production has increased the importance of quantifying forest biomass in recent years. The official U.S. forest carbon reporting is based on the forest biomass estimates...
Accurate biomass measurements and analyses are critical components in quantifying carbon stocks and sequestration
rates, assessing potential impacts due to climate change, locating bio-energy processing plants, and mapping and
planning fuel treatments. To this end, biomass equations will remain a key component of future carbon measurements
and estimation. As researchers...
Airborne laser scanning, collected in a sampling mode, has the potential to be a valuable tool for estimating the biomass resources available to support bioenergy production in rural communities of interior Alaska. In this study, we present a methodology for estimating forest biomass over a 201,226-ha area (of which 163,913...
Tree biomass is typically estimated using statistical models. This review highlights five limitations of most tree biomass models, which include the following: (1) biomass data are costly to collect and alternative sampling methods are used; (2) belowground data and models are generally lacking; (3) models are often developed from small...
Wildfire exclusion over the past century or more has resulted in extensive fuel accumulations throughout much of the West that combined with recent climatic patterns have increased the frequency of relatively uncommon, large, high-severity wildfires. Forest restoration treatments intended to alter landscape-level fire disturbance patterns can be difficult to implement...
Our ability to assess the continental impacts of woody encroachment remains compromised by the paucity of studies quantifying regional encroachment rates. This knowledge gap is especially apparent when it comes to quantifying the impact of woody encroachment on large-scale carbon dynamics. In this study, we use a combination of aerial...