Current ocean color sensors, for example SeaWiFS and MODIS, are well suited for sampling the open ocean. However,
coastal environments are spatially and optically more complex and require more frequent sampling and higher spatial
resolution sensors with additional spectral channels. We have conducted experiments with data from Hyperion and
airborne...
Photosynthetic production of organic matter by microscopic oceanic phytoplankton fuels ocean ecosystems
and contributes roughly half of the Earth's net primary production. For 13 years, the Sea-viewing Wide
Field-of-view Sensor (SeaWiFS) mission provided the first consistent, synoptic observations of global ocean
ecosystems. Changes in the surface chlorophyll concentration, the primary...
The Hyperspectral Imager for the Coastal Ocean (HICO) presently onboard the International Space Station (ISS) is an imaging spectrometer designed for remote sensing of coastal waters. The instrument is not equipped with any onboard spectral and radiometric calibration devices. Here we describe vicarious calibration techniques that have been used in...
We investigated 32 net primary productivity (NPP) models by assessing skills to reproduce integrated NPP in the Arctic Ocean. The models were provided with two sources each of surface chlorophyll-a concentration (chlorophyll), photosynthetically available radiation (PAR), sea surface temperature (SST), and mixed-layer depth (MLD). The models were most sensitive to...
Satellite measurements allow global assessments of phytoplankton concentrations and, from observed temporal changes in biomass, direct access to net biomass accumulation rates (r). For the subarctic Atlantic basin, analysis of annual cycles in r reveals that initiation of the annual blooming phase does not occur in spring after stratification surpasses...