Porous silicon prepared by low-cost and scalable magnesiothermic reactions is a promising anode material for Li-ion batteries; yet, retaining good cycling stability for such materials in electrodes of practical loading remains a challenge. Here, we engineered the nanoporous silicon from a modified magnesiothermic reaction by controlled surface oxidization forming a...
Full Text:
1
A Stable Nanoporous Silicon Anode Prepared by Modified
Porous silicon prepared by low-cost and scalable magnesiothermic reactions is a promising anode material for Li-ion batteries; yet, retaining good cycling stability for such materials in electrodes of practical loading remains a challenge. Here, we engineered the nanoporous silicon from a modified magnesiothermic reaction by controlled surface oxidization forming a...
Full Text:
silicon anode prepared by modified magnesiothermic reactions
Available online at www.sciencedirect.com
Porous silicon prepared by low-cost and scalable magnesiothermic reactions is a promising anode material for Li-ion batteries; yet, retaining good cycling stability for such materials in electrodes of practical loading remains a challenge. Here, we engineered the nanoporous silicon from a modified magnesiothermic reaction by controlled surface oxidization forming a...
Na-ion batteries are emerging as one of the most promising energy storage technologies, particularly for grid-level applications. Among anode candidate materials, hard carbon is very attractive due to its high capacity and low cost. However, hard carbon anodes often suffer a low first-cycle Coulombic efficiency and fast capacity fading. In...
Full Text:
Hard Carbon Anode for Na-Ion Batteries via
Graphene Oxide as a Dehydration Agent
Wei Luo†, Clement
Na-ion batteries are emerging as one of the most promising energy storage technologies, particularly for grid-level applications. Among anode candidate materials, hard carbon is very attractive due to its high capacity and low cost. However, hard carbon anodes often suffer a low first-cycle Coulombic efficiency and fast capacity fading. In...
Full Text:
Anode for Na-Ion Batteries via Graphene Oxide as a Dehydration Agent
Low-Surface-Area Hard Carbon