Article

 

BaeLearningBayesianNetworks.pdf Public Deposited

Downloadable Content

Download PDF
https://ir.library.oregonstate.edu/concern/articles/0z708z145

Descriptions

Attribute NameValues
Creator
Abstract
  • Bayesian networks are probabilistic models that represent complex distributions in a modular way and have become very popular in many fields. There are many methods to build Bayesian networks from a random sample of independent and identically distributed observations. However, many observational studies are designed using some form of clustered sampling that introduces correlations between observations within the same cluster and ignoring this correlation typically inflates the rate of false positive associations. We describe a novel parameterization of Bayesian networks that uses random effects to model the correlation within sample units and can be used for structure and parameter learning from correlated data without inflating the Type I error rate. We compare different learning metrics using simulations and illustrate the method in two real examples: an analysis of genetic and non-genetic factors associated with human longevity from a family-based study, and an example of risk factors for complications of sickle cell anemia from a longitudinal study with repeated measures.
Rights Statement
Additional Information
  • description.provenance : Made available in DSpace on 2016-06-15T14:41:39Z (GMT). No. of bitstreams: 3 license_rdf: 1370 bytes, checksum: cd1af5ab51bcc7a5280cf305303530e9 (MD5) BaeLearningBayesianNetworks.pdf: 1777547 bytes, checksum: 1700b69128a1b9b37ff43bb145e5316a (MD5) BaeLearningBayesianNetworksSupplementaryInformation.pdf: 80049 bytes, checksum: e7232bc2bbc068067162727b4b10e54c (MD5) Previous issue date: 2016-05-05
  • description.provenance : Approved for entry into archive by Patricia Black(patricia.black@oregonstate.edu) on 2016-06-15T14:41:39Z (GMT) No. of bitstreams: 3 license_rdf: 1370 bytes, checksum: cd1af5ab51bcc7a5280cf305303530e9 (MD5) BaeLearningBayesianNetworks.pdf: 1777547 bytes, checksum: 1700b69128a1b9b37ff43bb145e5316a (MD5) BaeLearningBayesianNetworksSupplementaryInformation.pdf: 80049 bytes, checksum: e7232bc2bbc068067162727b4b10e54c (MD5)
  • description.provenance : Submitted by Patricia Black (patricia.black@oregonstate.edu) on 2016-06-15T14:41:14Z No. of bitstreams: 3 license_rdf: 1370 bytes, checksum: cd1af5ab51bcc7a5280cf305303530e9 (MD5) BaeLearningBayesianNetworks.pdf: 1777547 bytes, checksum: 1700b69128a1b9b37ff43bb145e5316a (MD5) BaeLearningBayesianNetworksSupplementaryInformation.pdf: 80049 bytes, checksum: e7232bc2bbc068067162727b4b10e54c (MD5)

Relationships

Parents:

Items