The complex net effect of reciprocal interactions and recruitment facilitation maintains an intertidal kelp community

Public Deposited

Downloadable Content

Download PDF


Attribute NameValues
  • 1. Theoretical and empirical ecology has transitioned from a focus on the role of negative interactions in species coexistence to a more pluralistic view that acknowledges that coexistence in natural communities is more complex, and depends on species interactions that vary in strength, sign, and reciprocity, and such contexts as the environment and life-history stage. 2. We used a whole-community approach to examine how species interactions contribute to the maintenance of a rocky intertidal macroalgal canopy–understorey assemblage. We determined both the types of interactions in this network, and whether interactions were sensitive to environmental gradients. 3. Focusing on a structurally dominant canopy kelp Saccharina sessilis, and its diverse co-occurring understorey assemblage, we evaluated the role of the understorey in controlling S. sessilis recruitment and quantified the reciprocal effect of the S. sessilis canopy and understorey on one another using a removal experiment replicated across 600 km of coastline. We determined the sensitivity of interactions to natural variation in light and nutrient availability (replicated among four regions on the N.E. Pacific coast), and under different wave conditions (three wave regimes). 4. Surprisingly, species interactions were similar across sites and thus not context-dependent. Unexpectedly, the understorey community had a strong positive effect on the S. sessilis canopy, whereby the adult canopy decreased dramatically following understorey removal. Additionally, S. sessilis recruitment depended on the presence of understorey coralline algal turf. In turn, the canopy had a neutral effect on the coralline understorey, but a negative effect on non-calcifying algal turfs, likely eventually generating positive indirect canopy effects on the coralline understorey. Density-dependent intraspecific competition between S. sessilis adults and recruits may moderate this positive feedback between the S. sessilis canopy and coralline understorey. 5. Synthesis. Our research highlights the importance of positive interactions for coexistence in natural communities, and the necessity of studying multiple life-history stages and reciprocal species interactions in order to elucidate the mechanisms that maintain diversity.
  • Keywords: marine, plant-plant interactions, aquatic plant ecology, positive interactions, environmental gradients, benthic, macroalgae
Resource Type
Date Available
Date Issued
  • Barner, A. K., Hacker, S. D., Menge, B. A., & Nielsen, K. J. (2016). The complex net effect of reciprocal interactions and recruitment facilitation maintains an intertidal kelp community. Journal of Ecology, 104(1), 33–43. doi:10.1111/1365-2745.12495
Journal Title
Journal Volume
  • 104
Journal Issue/Number
  • 1
Rights Statement
Funding Statement (additional comments about funding)
  • Funding was provided by NSF grants OCE07-26983, OCE07-27611, OCE10-61233, OCE10-61530 and OCE15-19401 to BAM, SDH and KJN; an EPA STAR Graduate Research Fellowship (FP917429), Oregon State University’s Integrative Biology Research Funds and Sigma Xi Grant-in-Aid of Research to AKB; start-up funds from O.S.U. to SDH; and funding from the Mellon Foundation, the Valley Foundation, the Packard Foundation and the Moore Foundation to B.A.M. This is publication 453 from PISCO, the Partnership for Interdisciplinary Studies of Coastal Oceans, funded primarily by the Packard Foundation.
Peer Reviewed



This work has no parents.