Article
 

Population Structure and Phylogeography in Nassau Grouper (Epinephelus striatus), a Mass-Aggregating Marine Fish

Public Deposited

Downloadable Content

Download PDF
https://ir.library.oregonstate.edu/concern/articles/6395w885g

Descriptions

Attribute NameValues
Creator
Abstract
  • To address patterns of genetic connectivity in a mass-aggregating marine fish, we analyzed genetic variation in mitochondrial DNA (mtDNA), microsatellites, and single nucleotide polymorphisms (SNPs) for Nassau grouper (Epinephelus striatus). We expected Nassau grouper to exhibit genetic differentiation among its subpopulations due to its reproductive behavior and retentive oceanographic conditions experienced across the Caribbean basin. All samples were genotyped for two mitochondrial markers and 9 microsatellite loci, and a subset of samples were genotyped for 4,234 SNPs. We found evidence of genetic differentiation in a Caribbean-wide study of this mass-aggregating marine fish using mtDNA (FST = 0.206, p<0.001), microsatellites (FST = 0.002, p = 0.004) and SNPs (FST = 0.002, p = 0.014), and identified three potential barriers to larval dispersal. Genetically isolated regions identified in our work mirror those seen for other invertebrate and fish species in the Caribbean basin. Oceanographic regimes in the Caribbean may largely explain patterns of genetic differentiation among Nassau grouper subpopulations. Regional patterns observed warrant standardization of fisheries management and conservation initiatives among countries within genetically isolated regions.
License
Resource Type
DOI
Date Available
Date Issued
Citation
  • Jackson AM, Semmens BX, Sadovy de Mitcheson Y, Nemeth RS, Heppell SA, et al. (2014) Population Structure and Phylogeography in Nassau Grouper (Epinephelus striatus), a Mass-Aggregating Marine Fish. PLoS ONE 9(5): e97508. doi:10.1371/journal.pone.0097508
Journal Title
Journal Volume
  • 9
Journal Issue/Number
  • 5
Academic Affiliation
Rights Statement
Funding Statement (additional comments about funding)
  • Sample collection and lab work was funded by National Geographic (Young Explorers Grant #8928-11), the Reef Environmental Education Foundation (REEF), the Lenfest Ocean Program, Puerto Rico Sea Grant (#R-31-1-06), the USGS State Partnership Program (07ERAG0078), the Caribbean Coral Reef Institute of the University of Puerto Rico and grant from the Friends of Long Marine Lab.
Publisher
Peer Reviewed
Language
Replaces

Relationships

Parents:

This work has no parents.

Items