Fractional Brownian fields over manifolds Public Deposited

http://ir.library.oregonstate.edu/concern/articles/7p88cj275

Descriptions

Attribute NameValues
Creator
Abstract or Summary
  • Extensions of the fractional Brownian fields are constructed over a complete Riemannian manifold. This construction is carried out for the full range of the Hurst parameter α ∈ (0, 1). In particular, we establish existence, distributional scaling (self-similiarity), stationarity of the increments, and almost sure H¨older continuity of sample paths. Stationary counterparts to these fields are also constructed.
Resource Type
DOI
Date Available
Date Issued
Citation
  • Gelbaum, Z. (2014). Fractional Brownian fields over manifolds. Transactions of the American Mathematical Society, 366(9), 4781-4814. doi:10.1090/S0002-9947-2014-06106-0
Series
Rights Statement
Related Items
Publisher
Peer Reviewed
Language
Replaces
Additional Information
  • description.provenance : Approved for entry into archive by Erin Clark(erin.clark@oregonstate.edu) on 2014-12-18T18:51:30Z (GMT) No. of bitstreams: 1GelbaumZacharyMathematicsFractionalBrownianFields.pdf: 318564 bytes, checksum: dc97797b3702caa04ffeba3148c83fb2 (MD5)
  • description.provenance : Submitted by Erin Clark (erin.clark@oregonstate.edu) on 2014-12-18T18:51:12ZNo. of bitstreams: 1GelbaumZacharyMathematicsFractionalBrownianFields.pdf: 318564 bytes, checksum: dc97797b3702caa04ffeba3148c83fb2 (MD5)
  • description.provenance : Made available in DSpace on 2014-12-18T18:51:30Z (GMT). No. of bitstreams: 1GelbaumZacharyMathematicsFractionalBrownianFields.pdf: 318564 bytes, checksum: dc97797b3702caa04ffeba3148c83fb2 (MD5) Previous issue date: 2014-09

Relationships

Parents:

This work has no parents.

Last modified

Downloadable Content

Download PDF

Items