Article

 

Spectral analysis of seismic noise induced by rivers: a new tool to monitor spatiotemporal changes in stream hydrodynamics Public Deposited

Downloadable Content

Download PDF
https://ir.library.oregonstate.edu/concern/articles/g445cf861

Descriptions

Attribute NameValues
Creator
Abstract
  • Analysis of continuous seismic data recorded by a dense passive seismological network (Hi‐CLIMB) installed across the Himalayas reveals strong spatial and temporal variations in the ambient seismic energy produced at high frequencies (>1 Hz). From June to September 2003, the high‐frequency seismic noise is observed to increase up to 20 dB (relative to (m/s)²/Hz) for all the stations located along a steep 30‐km‐long narrow and deeply incised channel of the Trisuli River, a major trans‐Himalayan river. The early summer increase in high‐frequency energy is modulated by a 24‐h periodicity where the minimum of seismic noise level is reached around noon and the maximum is reached late in the evening. A detailed study of seismic noise amplitude reveals a clear correlation with both regional meteorological and hydrological data along the Trisuli River. Seasonal increase in ambient noise coincides with the strong monsoon rainfall and a period of rapid melting of snow and ice in the high elevations. The observed 24‐h cyclicity is consistent with the daily fluctuation of the precipitation and river discharge in the region. River‐induced seismic noise is partly generated by stream turbulence, but this mechanism fails to explain the observed clockwise hysteresis of seismic noise amplitude versus water level. This pattern is better explained if a significant part of the observed seismic noise is caused by ground vibrations generated by bed load transport. This points out the potential of using background seismic noise to quantify in continuous river bed load and monitor its spatial variations, which remain difficult with classical approaches.
Resource Type
DOI
Date Available
Date Issued
Citation
  • Burtin, A., L. Bollinger, J. Vergne, R. Cattin, and J. L. Na´beˇlek (2008), Spectral analysis of seismic noise induced by rivers: A new tool to monitor spatiotemporal changes in stream hydrodynamics, J. Geophys. Res., 113, B05301, doi:10.1029/2007JB005034.
Journal Title
Journal Volume
  • 113
Rights Statement
Funding Statement (additional comments about funding)
  • U.S.NSF Continental Dynamics Program, EAR 9909609.
Publisher
Language
Replaces
Additional Information
  • description.provenance : Made available in DSpace on 2010-10-04T18:55:49Z (GMT). No. of bitstreams: 1 Burtin_et_al_JGR_2008.pdf: 2360262 bytes, checksum: c430854cbe941b0377a00b57d385928d (MD5) Previous issue date: 2008
  • description.provenance : Approved for entry into archive by Digital Production(digitalproduc@gmail.com) on 2010-10-04T18:55:49Z (GMT) No. of bitstreams: 1 Burtin_et_al_JGR_2008.pdf: 2360262 bytes, checksum: c430854cbe941b0377a00b57d385928d (MD5)
  • description.provenance : Submitted by Eric Vanderwall (ewscanner@gmail.com) on 2010-09-14T20:56:15Z No. of bitstreams: 1 Burtin_et_al_JGR_2008.pdf: 2360262 bytes, checksum: c430854cbe941b0377a00b57d385928d (MD5)

Relationships

Parents:

This work has no parents.

Items