Seasonal cues induce phenotypic plasticity of Drosophila suzukii to enhance winter survival Public Deposited

http://ir.library.oregonstate.edu/concern/articles/gm80hx26v

Figure S1, Tables S1-S8 are available online at:  http://bmcecol.biomedcentral.com/articles/10.1186/s12898-016-0070-3

Availability of supporting data: The RNA sequencing data sets supporting the results of this article are available in the National Center for Biotechnology Information (NCBI) repository. [Bio- Project PRJNA294845  http://www.ncbi.nlm.nih.gov/bioproject/ PRJNA294845/, and Sequence Read Archives SRS1057327 (summer bodies)  http://www.ncbi.nlm.nih. gov/ sra/?term = SRS1057327/; SRS1057275 (summer heads)  http://www.ncbi.nlm.nih.gov/ sra/?term = SRS1057275/; SRS1057328 (winter bodies)  http://www. ncbi.nlm.nih.gov/ sra/?term = SRS1057328/; SRS1057296 (winter heads)  http://www.ncbi.nlm.nih.gov/ sra/?term = SRS1057296/]. NCBI accession for individual replicates are also provided in Additional file 2: Table S1.

This is the publisher’s final pdf. The published article is copyrighted by the author(s) and published by BioMed Central. The published article can be found at:  http://bmcecol.biomedcentral.com/

Descriptions

Attribute NameValues
Creator
Abstract or Summary
  • Background: As global climate change and exponential human population growth intensifies pressure on agricultural systems, the need to effectively manage invasive insect pests is becoming increasingly important to global food security. Drosophila suzukii is an invasive pest that drastically expanded its global range in a very short time since 2008, spreading to most areas in North America and many countries in Europe and South America. Preliminary ecological modeling predicted a more restricted distribution and, for this reason, the invasion of D. suzukii to northern temperate regions is especially unexpected. Investigating D. suzukii phenology and seasonal adaptations can lead to a better understanding of the mechanisms through which insects express phenotypic plasticity, which likely enables invasive species to successfully colonize a wide range of environments. Results: We describe seasonal phenotypic plasticity in field populations of D. suzukii. Specifically, we observed a trend of higher proportions of flies with the winter morph phenotype, characterized by darker pigmentation and longer wing length, as summer progresses to winter. A laboratory-simulated winter photoperiod and temperature (12:12 L:D and 10°C) were sufficient to induce the winter morph phenotype in D. suzukii. This winter morph is associated with increased survival at 1°C when compared to the summer morph, thus explaining the ability of D. suzukii to survive cold winters. We then used RNA sequencing to identify gene expression differences underlying seasonal differences in D. suzukii physiology. Winter morph gene expression is consistent with known mechanisms of cold-hardening such as adjustments to ion transport and up-regulation of carbohydrate metabolism. In addition, transcripts involved in oogenesis and DNA replication were down-regulated in the winter morph, providing the first molecular evidence of a reproductive diapause in D. suzukii. Conclusions: To date, D. suzukii cold resistance studies suggest that this species cannot overwinter in northern locations, e.g. Canada, even though they are established pests in these regions. Combining physiological investigations with RNA sequencing, we present potential mechanisms by which D. suzukii can overwinter in these regions. This work may contribute to more accurate population models that incorporate seasonal variation in physiological parameters, leading to development of better management strategies.
Resource Type
DOI
Date Available
Date Issued
Citation
  • Shearer, P. W., West, J. D., Walton, V. M., Brown, P. H., Svetec, N., & Chiu, J. C. (2016). Seasonal cues induce phenotypic plasticity of Drosophila suzukii to enhance winter survival. BMC Ecology, 16, 11. doi:10.1186/s12898-016-0070-3
Series
Keyword
Rights Statement
Funding Statement (additional comments about funding)
Publisher
Peer Reviewed
Language
Replaces
Additional Information
  • description.provenance : Made available in DSpace on 2016-04-22T15:02:51Z (GMT). No. of bitstreams: 2 license_rdf: 1370 bytes, checksum: cd1af5ab51bcc7a5280cf305303530e9 (MD5) ShearerSeasonalCueInduce.pdf: 3235806 bytes, checksum: 4a558172dfe87e2ba701bdb8cfb7f07a (MD5) Previous issue date: 2016-03-22
  • description.provenance : Submitted by Patricia Black (patricia.black@oregonstate.edu) on 2016-04-22T15:01:47Z No. of bitstreams: 2 license_rdf: 1370 bytes, checksum: cd1af5ab51bcc7a5280cf305303530e9 (MD5) ShearerSeasonalCueInduce.pdf: 3235806 bytes, checksum: 4a558172dfe87e2ba701bdb8cfb7f07a (MD5)
  • description.provenance : Approved for entry into archive by Patricia Black(patricia.black@oregonstate.edu) on 2016-04-22T15:02:51Z (GMT) No. of bitstreams: 2 license_rdf: 1370 bytes, checksum: cd1af5ab51bcc7a5280cf305303530e9 (MD5) ShearerSeasonalCueInduce.pdf: 3235806 bytes, checksum: 4a558172dfe87e2ba701bdb8cfb7f07a (MD5)

Relationships

Parents:

This work has no parents.

Last modified

Downloadable Content

Download PDF

Items