Global Existence and Energy Decay Rates for a Kirchhoff-Type Wave Equation with Nonlinear Dissipation Public Deposited

http://ir.library.oregonstate.edu/concern/articles/ms35tb27t

Descriptions

Attribute NameValues
Creator
Abstract or Summary
  • The first objective of this paper is to prove the existence and uniqueness of global solutions for a Kirchhoff-type wave equation with nonlinear dissipation of the form Kuⁿ + 𝑀(|𝐴¹/²𝑢|²)𝐴𝑢 + 𝑔(𝑢')=0 under suitable assumptions on 𝐾, 𝐴, 𝑀(⋅), and 𝑔(⋅). Next, we under some growth conditions on the nonlinear dissipation 𝑔. Lastly, numerical simulations in order to verify the analytical results are given.
Resource Type
DOI
Date Available
Date Issued
Citation
  • Kim, D., Kim, D., Hong, K. S., & Jung, I. H. (2014). Global Existence and Energy Decay Rates for a Kirchhoff-Type Wave Equation with Nonlinear Dissipation. Scientific World Journal, 2014, 716740. doi:10.1155/2014/716740
Series
Rights Statement
Related Items
Funding Statement (additional comments about funding)
Publisher
Peer Reviewed
Language
Replaces
Additional Information
  • This is the publisher’s final pdf.
  • description.provenance : Made available in DSpace on 2014-05-27T18:46:26Z (GMT). No. of bitstreams: 2license_rdf: 1370 bytes, checksum: cd1af5ab51bcc7a5280cf305303530e9 (MD5)KimDojinMathematicsGlobalExistenceEnergy.pdf: 1639288 bytes, checksum: 86e3d08c200012da64312b820196d452 (MD5) Previous issue date: 2014-04-07
  • description.provenance : Approved for entry into archive by Erin Clark(erin.clark@oregonstate.edu) on 2014-05-27T18:46:26Z (GMT) No. of bitstreams: 2license_rdf: 1370 bytes, checksum: cd1af5ab51bcc7a5280cf305303530e9 (MD5)KimDojinMathematicsGlobalExistenceEnergy.pdf: 1639288 bytes, checksum: 86e3d08c200012da64312b820196d452 (MD5)
  • description.provenance : Submitted by Erin Clark (erin.clark@oregonstate.edu) on 2014-05-27T18:46:13ZNo. of bitstreams: 2license_rdf: 1370 bytes, checksum: cd1af5ab51bcc7a5280cf305303530e9 (MD5)KimDojinMathematicsGlobalExistenceEnergy.pdf: 1639288 bytes, checksum: 86e3d08c200012da64312b820196d452 (MD5)

Relationships

Parents:

This work has no parents.

Last modified

Downloadable Content

Download PDF

Items