A Systematic Investigation of Structure/Function Requirements for the Apolipoprotein A-I/Lecithin Cholesterol Acyltransferase Interaction Loop of High-density Lipoprotein Public Deposited

http://ir.library.oregonstate.edu/concern/articles/n870zw61v

Descriptions

Attribute NameValues
Creator
Abstract or Summary
  • The interaction of lecithin-cholesterol acyltransferase (LCAT) with apolipoprotein A-I (apoA-I) plays a critical role in highdensity lipoprotein (HDL) maturation.Wepreviously identified a highly solvent-exposed apoA-I loop domain (Leu¹⁵⁹–Leu¹⁷⁰) in nascent HDL, the so-called “solar flare” (SF) region, and proposed that it serves as an LCAT docking site (Wu, Z., Wagner, M. A., Zheng, L., Parks, J. S., Shy, J. M., 3rd, Smith, J. D., Gogonea, V., and Hazen, S. L. (2007) Nat. Struct. Mol. Biol. 14, 861–868). The stability and role of the SF domain of apoA-I in supporting HDL binding and activation of LCAT are debated. Here we show by site-directed mutagenesis that multiple residues within the SF region (Pro¹⁶⁵, Tyr¹⁶⁶, Ser¹⁶⁷, and Asp¹⁶⁸) of apoA-I are critical for both LCAT binding to HDL and LCAT catalytic efficiency. The critical role for possible hydrogen bond interaction at apoA-I Tyr¹⁶⁶ was further supported using reconstituted HDL generated from apoA-I mutants (Tyr¹⁶⁶→Glu or Asn), which showed preservation in both LCAT binding affinity and catalytic efficiency. Moreover, the in vivo functional significance of NO₂-Tyr¹⁶⁶-apoA-I, a specific post-translational modification on apoA-I that is abundant within human atherosclerotic plaque, was further investigated by using the recombinant protein generated from E. coli containing a mutated orthogonal tRNA synthetase/tRNACUA pair enabling site-specific insertion of the unnatural amino acid into apoA-I. NO2-Tyr¹⁶⁶-apoA-I, after subcutaneous injection into hLCATᵀᵍ/ᵀᵍ, apoA-I_/_ mice, showed impaired LCAT activation in vivo, with significant reduction in HDL cholesteryl ester formation. The present results thus identify multiple structural features within the solvent- exposed SF region of apoA-I of nascent HDL essential for optimal LCAT binding and catalytic efficiency.
Resource Type
DOI
Date Available
Date Issued
Citation
  • Gu, X., Wu, Z., Huang, Y., Wagner, M. A., Baleanu-Gogonea, C., Mehl, R. A., ... & Hazen, S. L. (2016). A systematic investigation of structure/function requirements for the apolipoprotein AI-lecithin cholesterol acyltransferase interaction loop of HDL. Journal of Biological Chemistry, 291(12), 6386-6395. doi:10.1074/jbc.M115.696088
Series
Rights Statement
Related Items
Funding Statement (additional comments about funding)
Publisher
Peer Reviewed
Language
Replaces

Relationships

Parents:

This work has no parents.

Last modified

Downloadable Content

Download PDF

Items