Article

 

HubickiChristianMIMESwing-LegTrajectory_SupportingInformation.pdf Public Deposited

Downloadable Content

Download PDF
https://ir.library.oregonstate.edu/concern/articles/pn89d847p

Descriptions

Attribute NameValues
Creator
Abstract
  • To achieve robust and stable legged locomotion in uneven terrain, animals must effectively coordinate limb swing and stance phases, which involve distinct yet coupled dynamics. Recent theoretical studies have highlighted the critical influence of swing-leg trajectory on stability, disturbance rejection, leg loading and economy of walking and running. Yet, simulations suggest that not all these factors can be simultaneously optimized. A potential trade-off arises between the optimal swing-leg trajectory for disturbance rejection (to maintain steady gait) versus regulation of leg loading (for injury avoidance and economy). Here we investigate how running guinea fowl manage this potential trade-off by comparing experimental data to predictions of hypothesis-based simulations of running over a terrain drop perturbation. We use a simple model to predict swing-leg trajectory and running dynamics. In simulations, we generate optimized swing-leg trajectories based upon specific hypotheses for task-level control priorities. We optimized swing trajectories to achieve i) constant peak force, ii) constant axial impulse, or iii) perfect disturbance rejection (steady gait) in the stance following a terrain drop. We compare simulation predictions to experimental data on guinea fowl running over a visible step down. Swing and stance dynamics of running guinea fowl closely match simulations optimized to regulate leg loading (priorities i and ii), and do not match the simulations optimized for disturbance rejection (priority iii). The simulations reinforce previous findings that swing-leg trajectory targeting disturbance rejection demands large increases in stance leg force following a terrain drop. Guinea fowl negotiate a downward step using unsteady dynamics with forward acceleration, and recover to steady gait in subsequent steps. Our results suggest that guinea fowl use swing-leg trajectory consistent with priority for load regulation, and not for steadiness of gait. Swing-leg trajectory optimized for load regulation may facilitate economy and injury avoidance in uneven terrain.
Rights Statement
Additional Information
  • description.provenance : Submitted by Erin Clark (erin.clark@oregonstate.edu) on 2014-08-08T20:51:38Z No. of bitstreams: 3 license_rdf: 1370 bytes, checksum: cd1af5ab51bcc7a5280cf305303530e9 (MD5) HubickiChristianMIMESwing-LegTrajectory.pdf: 1331660 bytes, checksum: 556139eb775bad948d54943585b9186f (MD5) HubickiChristianMIMESwing-LegTrajectory_SupportingInformation.pdf: 99946 bytes, checksum: 20e9dfe719c6167b3f100af981c31135 (MD5)
  • description.provenance : Made available in DSpace on 2014-08-08T20:51:55Z (GMT). No. of bitstreams: 3 license_rdf: 1370 bytes, checksum: cd1af5ab51bcc7a5280cf305303530e9 (MD5) HubickiChristianMIMESwing-LegTrajectory.pdf: 1331660 bytes, checksum: 556139eb775bad948d54943585b9186f (MD5) HubickiChristianMIMESwing-LegTrajectory_SupportingInformation.pdf: 99946 bytes, checksum: 20e9dfe719c6167b3f100af981c31135 (MD5) Previous issue date: 2014-06-30
  • description.provenance : Approved for entry into archive by Erin Clark(erin.clark@oregonstate.edu) on 2014-08-08T20:51:55Z (GMT) No. of bitstreams: 3 license_rdf: 1370 bytes, checksum: cd1af5ab51bcc7a5280cf305303530e9 (MD5) HubickiChristianMIMESwing-LegTrajectory.pdf: 1331660 bytes, checksum: 556139eb775bad948d54943585b9186f (MD5) HubickiChristianMIMESwing-LegTrajectory_SupportingInformation.pdf: 99946 bytes, checksum: 20e9dfe719c6167b3f100af981c31135 (MD5)