Article

 

ZhouZitaoChemBioEnvironEnginInfluenceSurfaceChemicalSupportingInfoFile6.pdf Public Deposited

Downloadable Content

Download PDF
https://ir.library.oregonstate.edu/concern/articles/wp988m58t

Descriptions

Attribute NameValues
Creator
Abstract
  • Zinc oxide nanoparticles (ZnO NPs) are widely used in a variety of products, thus understanding their health and environmental impacts is necessary to appropriately manage their risks. To keep pace with the rapid increase in products utilizing engineered ZnO NPs, rapid in silico toxicity test methods based on knowledge of comprehensive in vivo and in vitro toxic responses are beneficial in determining potential nanoparticle impacts. To achieve or enhance their desired function, chemical modifications are often performed on the NPs surface; however, the roles of these alterations play in determining the toxicity of ZnO NPs are still not well understood. As such, we investigated the toxicity of 17 diverse ZnO NPs varying in both size and surface chemistry to developing zebrafish (exposure concentrations ranging from 0.016 to 250 mg/L). Despite assessing a suite of 19 different developmental, behavioural and morphological endpoints in addition to mortality in this study, mortality was the most common endpoint observed for all of the ZnO NP types tested. ZnO NPs with surface chemical modification, regardless of the type, resulted in mortality at 24 hours post-fertilization (hpf) while uncoated particles did not induce significant mortality until 120 hpf. Using eight intrinsic chemical properties that relate to the outermost surface chemistry of the engineered ZnO nanoparticles, the highly dimensional toxicity data were converted to a 2-dimensional data set through principal component analysis (PCA). Euclidean distance was used to partition different NPs into several groups based on converted data (score) which were directly related to changes in the outermost surface chemistry. Kriging estimations were then used to develop a contour map based on mortality data as a response. This study illustrates how the intrinsic properties of NPs, including surface chemical modifications and capping agents, are useful to separate and identify ZnO NP toxicity to zebrafish (Danio rerio).
  • Keywords: toxicology, kriging estimation, modelling, nanotechnology, nanomaterials
  • Keywords: toxicology, kriging estimation, modelling, nanotechnology, nanomaterials
Rights Statement
Additional Information
  • description.provenance : Submitted by Patricia Black (patricia.black@oregonstate.edu) on 2015-08-18T16:05:40Z No. of bitstreams: 8 license_rdf: 1370 bytes, checksum: cd1af5ab51bcc7a5280cf305303530e9 (MD5) ZhouZitaoChemBioEnvironEnginInfluenceSurfaceChemical.pdf: 1082223 bytes, checksum: 51916b484aaa1417ee8298fbd2de42b6 (MD5) ZhouZitaoChemBioEnvironEnginInfluenceSurfaceChemicalSupportingInfoFile1.xlsx: 20450 bytes, checksum: 7b15c16facf847ec7423d76078cec6b8 (MD5) ZhouZitaoChemBioEnvironEnginInfluenceSurfaceChemicalSupportingInfoFile2.xlsx: 65501 bytes, checksum: 7e7a369e46fdfc3be2a190f90ded5aca (MD5) ZhouZitaoChemBioEnvironEnginInfluenceSurfaceChemicalSupportingInfoFile3.pdf: 146808 bytes, checksum: efd5133301e4b42b37a85bb51ef7276b (MD5) ZhouZitaoChemBioEnvironEnginInfluenceSurfaceChemicalSupportingInfoFile4.pdf: 357820 bytes, checksum: 7d63b4bc574b1465d953936d7c233d51 (MD5) ZhouZitaoChemBioEnvironEnginInfluenceSurfaceChemicalSupportingInfoFile5.xlsx: 58093 bytes, checksum: d4acbbef55dce2b6a08ac68402164704 (MD5) ZhouZitaoChemBioEnvironEnginInfluenceSurfaceChemicalSupportingInfoFile6.pdf: 120610 bytes, checksum: 8270e0345553bf54b78535147168c8ee (MD5)
  • description.provenance : Made available in DSpace on 2015-08-18T16:06:09Z (GMT). No. of bitstreams: 8 license_rdf: 1370 bytes, checksum: cd1af5ab51bcc7a5280cf305303530e9 (MD5) ZhouZitaoChemBioEnvironEnginInfluenceSurfaceChemical.pdf: 1082223 bytes, checksum: 51916b484aaa1417ee8298fbd2de42b6 (MD5) ZhouZitaoChemBioEnvironEnginInfluenceSurfaceChemicalSupportingInfoFile1.xlsx: 20450 bytes, checksum: 7b15c16facf847ec7423d76078cec6b8 (MD5) ZhouZitaoChemBioEnvironEnginInfluenceSurfaceChemicalSupportingInfoFile2.xlsx: 65501 bytes, checksum: 7e7a369e46fdfc3be2a190f90ded5aca (MD5) ZhouZitaoChemBioEnvironEnginInfluenceSurfaceChemicalSupportingInfoFile3.pdf: 146808 bytes, checksum: efd5133301e4b42b37a85bb51ef7276b (MD5) ZhouZitaoChemBioEnvironEnginInfluenceSurfaceChemicalSupportingInfoFile4.pdf: 357820 bytes, checksum: 7d63b4bc574b1465d953936d7c233d51 (MD5) ZhouZitaoChemBioEnvironEnginInfluenceSurfaceChemicalSupportingInfoFile5.xlsx: 58093 bytes, checksum: d4acbbef55dce2b6a08ac68402164704 (MD5) ZhouZitaoChemBioEnvironEnginInfluenceSurfaceChemicalSupportingInfoFile6.pdf: 120610 bytes, checksum: 8270e0345553bf54b78535147168c8ee (MD5) Previous issue date: 2015-07-20
  • description.provenance : Approved for entry into archive by Patricia Black(patricia.black@oregonstate.edu) on 2015-08-18T16:06:09Z (GMT) No. of bitstreams: 8 license_rdf: 1370 bytes, checksum: cd1af5ab51bcc7a5280cf305303530e9 (MD5) ZhouZitaoChemBioEnvironEnginInfluenceSurfaceChemical.pdf: 1082223 bytes, checksum: 51916b484aaa1417ee8298fbd2de42b6 (MD5) ZhouZitaoChemBioEnvironEnginInfluenceSurfaceChemicalSupportingInfoFile1.xlsx: 20450 bytes, checksum: 7b15c16facf847ec7423d76078cec6b8 (MD5) ZhouZitaoChemBioEnvironEnginInfluenceSurfaceChemicalSupportingInfoFile2.xlsx: 65501 bytes, checksum: 7e7a369e46fdfc3be2a190f90ded5aca (MD5) ZhouZitaoChemBioEnvironEnginInfluenceSurfaceChemicalSupportingInfoFile3.pdf: 146808 bytes, checksum: efd5133301e4b42b37a85bb51ef7276b (MD5) ZhouZitaoChemBioEnvironEnginInfluenceSurfaceChemicalSupportingInfoFile4.pdf: 357820 bytes, checksum: 7d63b4bc574b1465d953936d7c233d51 (MD5) ZhouZitaoChemBioEnvironEnginInfluenceSurfaceChemicalSupportingInfoFile5.xlsx: 58093 bytes, checksum: d4acbbef55dce2b6a08ac68402164704 (MD5) ZhouZitaoChemBioEnvironEnginInfluenceSurfaceChemicalSupportingInfoFile6.pdf: 120610 bytes, checksum: 8270e0345553bf54b78535147168c8ee (MD5)