Time-Variable Refraction of the Internal Tide at the Hawaiian Ridge Public Deposited

Downloadable Content

Download PDF

This is the publisher’s final pdf. The published article is copyrighted by the American Meteorological Society and can be found at:


Attribute NameValues
  • The interaction of the dominant semidiurnal M₂ internal tide with the large-scale subtidal flow is examined in an ocean model by propagating the tide through an ensemble of background fields in a domain centered on the Hawaiian Ridge. The background fields are taken from the Simple Ocean Data Assimilation (SODA) ocean analysis, at 2-month intervals from 1992 through 2001. Tides are computed with the Primitive Equation Z-coordinate Harmonic Analysis of Tides (PEZ-HAT) model by 14-day integrations using SODA initial conditions and M₂ tidal forcing. Variability of the tide is found to occur primarily as the result of propagation through the nonstationary background fields, rather than via generation site variability. Generation of incoherent tidal variability is mapped and shown to occur mostly in association with waves generated at French Frigate Shoals scattering near the Musicians Seamounts to the north of the ridge. The phase-coherent internal tide loses energy at a domain-average rate of 2mWm⁻² by scattering into the non-stationary tide. Because of the interference of waves from multiple generation sites, variability of the internal tide is spatially inhomogeneous and values of the scattering rate 10 times larger occur in localized areas. It is estimated that 20% of the baroclinic tidal energy flux is lost by adiabatic scattering (refraction) within 250 km of the ridge, a value regarded as a lower bound because of the smoothed nature of the SODA fields used in this study.
Resource Type
Date Available
Date Issued
  • Zaron, Edward D., Gary D. Egbert, 2014: Time-Variable Refraction of the Internal Tide at the Hawaiian Ridge. Journal of Physical Oceanography, 44, 538–557. doi:10.1175/JPO-D-12-0238.1
Journal Title
Journal Volume
  • 44
Journal Issue/Number
  • 2
Rights Statement
Funding Statement (additional comments about funding)
  • Support for this work was provided by NSF Awards OCE-9819518 (Hawaii Ocean Mixing Experiment) and OCE-0623540 (Regional Studies of the Internal Tides). The ensemble of tidal solutions was computed using resources provided by a National Center for Atmospheric Research Large-Resource Allocation.
Peer Reviewed



This work has no parents.