Diagnosis of the Three-Dimensional Circulation in Mesoscale Features with Large Rossby Number Public Deposited

http://ir.library.oregonstate.edu/concern/defaults/08612q221

Descriptions

Attribute NameValues
Creator
Abstract or Summary
  • Several diagnoses of three-dimensional circulation, using density and velocity data from a high-resolution, upper-ocean SeaSoar and acoustic Doppler current profiler (ADCP) survey of a cyclonic jet meander and adjacent cyclonic eddy containing high Rossby number flow, are compared. The Q-vector form of the quasigeostrophic omega equation, two omega equations derived from iterated geostrophic intermediate models, an omega equation derived from the balance equations, and a vertical velocity diagnostic using a primitive equation model in conjunction with digital filtering are used to diagnose vertical and horizontal velocity fields. The results demonstrate the importance of the gradient wind balance in flow with strong curvature (high Rossby number). Horizontal velocities diagnosed from the intermediate models (the iterated geostrophic models and the balance equations), which include dynamics between those of quasigeostrophy and the primitive equations, are significantly reduced (enhanced) in comparison with the geostrophic velocities in regions of strong cyclonic (anticyclonic) curvature, consistent with gradient wind balance. The intermediate model relative vorticity fields are functionally related to the geostrophic relative vorticity field; anticyclonic vorticity is enhanced and cyclonic vorticity is reduced. The iterated geostrophic, balance equation and quasigeostrophic vertical velocity fields are similar in spatial pattern and scale, but the iterated geostrophic (and, to a lesser degree, the balance equation) vertical velocity is reduced in amplitude compared with the quasigeostrophic vertical velocity. This reduction is consistent with gradient wind balance, and is due to a reduction in the forcing of the omega equation through the geostrophic advection of ageostrophic relative vorticity. The vertical velocity diagnosed using a primitive equation model and a digital filtering technique also exhibits reduced magnitude in comparison with the quasigeostrophic field. A method to diagnose the gradient wind from a given dynamic height field has been developed. This technique is useful for the analysis of horizontal velocity in the presence of strong flow curvature. Observations of the nondivergent ageostrophic velocity field measured by the ADCP compare closely with the diagnosed gradient wind ageostrophic velocity.
Resource Type
DOI
Date Available
Date Issued
Citation
  • Shearman, R. Kipp, John A. Barth, J. S. Allen, Robert L. Haney, 2000: Diagnosis of the Three-Dimensional Circulation in Mesoscale Features with Large Rossby Number. Journal of Physical Oceanography, 30, 2687–2709.
Series
Rights Statement
Funding Statement (additional comments about funding)
Publisher
Peer Reviewed
Language
Replaces
Additional Information
  • description.provenance : Submitted by Deborah Campbell (deborah.campbell@oregonstate.edu) on 2012-02-08T23:24:47Z No. of bitstreams: 1 ShearmanRKipp.CEOAS.DiagnosisThreeDimensional.pdf: 672755 bytes, checksum: a8696cd0a289b272d44c6754cc3c8f5b (MD5)
  • description.provenance : Made available in DSpace on 2012-02-08T23:24:47Z (GMT). No. of bitstreams: 1 ShearmanRKipp.CEOAS.DiagnosisThreeDimensional.pdf: 672755 bytes, checksum: a8696cd0a289b272d44c6754cc3c8f5b (MD5) Previous issue date: 2000-11

Relationships

Parents:

This work has no parents.

Last modified

Downloadable Content

Download PDF

Items