The Accuracies of Crossover and Parallel-Track Estimates of Geostrophic Velocity from TOPEX/Poseidon and Jason Altimeter Data Public Deposited

http://ir.library.oregonstate.edu/concern/defaults/4m90dx106

Descriptions

Attribute NameValues
Creator
Abstract or Summary
  • Mean-squared errors of surface geostrophic velocity estimates from the crossover and parallel-track methods are calculated for altimeters in the Ocean Topography Experiment (TOPEX)/Poseidon and Jason orbits. As part of the crossover method analysis, the filtering properties and errors of cross-track speed estimates are examined. Velocity estimates from both the crossover and parallel-track methods have substantial mean-squared errors that exceed 20% of the signal standard deviation, differ systematically between the zonal and meridional components, and vary with latitude. The measurement errors on the zonal and meridional velocity component estimates from both methods increase at low latitudes owing to the inverse dependence of geostrophic velocity on the Coriolis parameter. Additional latitudinal variations result for the parallel-track method because of the poleward convergence of the satellite ground tracks and the presence of orbit error, and for the crossover method because of the changing angle between the ascending and descending ground tracks. At high latitudes, parallel-track estimates, have elevated measurement errors in both components, while only the zonal component is so affected for the crossover method. Along-track smoothing is efficient for mitigating measurement errors for crossover estimates, and the filtering properties of the smoothed estimates are simply related to the spectrum of cross-track speeds. Such smoothing is less effective for parallel-track estimates, and the filtering properties are more difficult to characterize because of the sampling geometry and the convergence of the parallel ground tracks at high latitudes. If suitable along-track smoothing is applied in the crossover method, root-mean-squared errors (rmse's) of about 30% or less of the signal standard deviation can be obtained for each orthogonal velocity component over the latitude range 5°–60°. With 2-cm orbit errors, the parallel-track method yields estimates of the meridional velocity component with errors that exceed 40% at all latitudes. If orbit errors can be reduced to 1-cm standard deviation, the parallel-track method yields an rmse smaller than 30% in both orthogonal components for the latitude range 5°–55°.
Resource Type
DOI
Date Available
Date Issued
Citation
  • Schlax, Michael G., Dudley B. Chelton, 2003: The Accuracies of Crossover and Parallel-Track Estimates of Geostrophic Velocity from TOPEX/Poseidon and Jason Altimeter Data. Journal of Atmospheric and Oceanic Technology, 20, 1196–1211.
Series
Rights Statement
Funding Statement (additional comments about funding)
Publisher
Language
Replaces
Additional Information
  • description.provenance : Submitted by Deborah Campbell (deborah.campbell@oregonstate.edu) on 2012-02-20T23:14:15Z No. of bitstreams: 1 CheltonDudleyB.CEOAS.AccuraciesCrossoverParallel.pdf: 548498 bytes, checksum: d03add103f7fa6b931fc339f58b33243 (MD5)
  • description.provenance : Made available in DSpace on 2012-02-20T23:14:15Z (GMT). No. of bitstreams: 1 CheltonDudleyB.CEOAS.AccuraciesCrossoverParallel.pdf: 548498 bytes, checksum: d03add103f7fa6b931fc339f58b33243 (MD5) Previous issue date: 2003-08

Relationships

In Administrative Set:
Last modified: 07/25/2017

Downloadable Content

Download PDF
Citations:

EndNote | Zotero | Mendeley

Items