A fluid-mechanics based classification scheme for surface transient storage in riverine environments: quantitatively separating surface from hyporheic transient storage Public Deposited

http://ir.library.oregonstate.edu/concern/defaults/4q77fs963

This is the publisher’s final pdf. The published article is copyrighted by Copernicus Publications and can be found at: [ http://publications.copernicus.org/.

Descriptions

Attribute NameValues
Creator
Abstract or Summary
  • Surface transient storage (STS) and hyporheic transient storage (HTS) have functional significance in stream ecology and hydrology. Currently, tracer techniques couple STS and HTS effects on stream nutrient cycling; however, STS resides in localized areas of the surface stream and HTS resides in the hyporheic zone. These contrasting environments result in different storage and exchange mechanisms with the surface stream, which can yield contrasting results when comparing transient storage effects among morphologically diverse streams. We propose a fluid mechanics approach to quantitatively separate STS from HTS that involves classifying and studying different types of STS. As a starting point, a classification scheme is needed. This paper introduces a classification scheme that categorizes different STS in riverine systems based on their flow structure. Eight STS types are identified and some are subcategorized based on characteristic mean flow structure: (1) lateral cavities (emergent and submerged); (2) protruding in-channel flow obstructions (backward-and forward-facing step); (3) isolated in-channel flow obstructions (emergent and submerged); (4) cascades and riffles; (5) aquatic vegetation (emergent and submerged); (6) pools (vertically submerged cavity, closed cavity, and recirculating reservoir); (7) meander bends; and (8) confluence of streams. The long-term goal is to use the classification scheme presented to develop predictive mean residence times for different STS using field-measurable hydromorphic parameters and obtain an effective STS mean residence time. The effective STS mean residence time can then be deconvolved from the transient storage residence time distribution (measured from a tracer test) to obtain an estimate of HTS mean residence time.
Resource Type
DOI
Date Available
Date Issued
Citation
  • Jackson, T., Haggerty, R., & Apte, S. (2013). A fluid-mechanics based classification scheme for surface transient storage in riverine environments: Quantitatively separating surface from hyporheic transient storage. Hydrology and Earth System Sciences, 17(7), 2747-2779. doi:10.5194/hess-17-2747-2013
Series
Keyword
Rights Statement
Funding Statement (additional comments about funding)
Publisher
Peer Reviewed
Language
Replaces
Additional Information
  • description.provenance : Made available in DSpace on 2013-09-09T20:46:39Z (GMT). No. of bitstreams: 2 license_rdf: 1370 bytes, checksum: cd1af5ab51bcc7a5280cf305303530e9 (MD5) JacksonTRCEOASFluidMechanicsBased.pdf: 2253997 bytes, checksum: 2236b14a88963492df1612cac2ccf648 (MD5) Previous issue date: 2013-07-15
  • description.provenance : Submitted by Deborah Campbell (deborah.campbell@oregonstate.edu) on 2013-09-09T20:46:39Z No. of bitstreams: 2 license_rdf: 1370 bytes, checksum: cd1af5ab51bcc7a5280cf305303530e9 (MD5) JacksonTRCEOASFluidMechanicsBased.pdf: 2253997 bytes, checksum: 2236b14a88963492df1612cac2ccf648 (MD5)

Relationships

In Administrative Set:
Last modified: 07/25/2017

Downloadable Content

Download PDF
Citations:

EndNote | Zotero | Mendeley

Items