Article
 

A fluid-mechanics based classification scheme for surface transient storage in riverine environments: quantitatively separating surface from hyporheic transient storage

Öffentlich Deposited

Herunterladbarer Inhalt

PDF Herunterladen
https://ir.library.oregonstate.edu/concern/articles/4q77fs963

Descriptions

Attribute NameValues
Creator
Abstract
  • Surface transient storage (STS) and hyporheic transient storage (HTS) have functional significance in stream ecology and hydrology. Currently, tracer techniques couple STS and HTS effects on stream nutrient cycling; however, STS resides in localized areas of the surface stream and HTS resides in the hyporheic zone. These contrasting environments result in different storage and exchange mechanisms with the surface stream, which can yield contrasting results when comparing transient storage effects among morphologically diverse streams. We propose a fluid mechanics approach to quantitatively separate STS from HTS that involves classifying and studying different types of STS. As a starting point, a classification scheme is needed. This paper introduces a classification scheme that categorizes different STS in riverine systems based on their flow structure. Eight STS types are identified and some are subcategorized based on characteristic mean flow structure: (1) lateral cavities (emergent and submerged); (2) protruding in-channel flow obstructions (backward-and forward-facing step); (3) isolated in-channel flow obstructions (emergent and submerged); (4) cascades and riffles; (5) aquatic vegetation (emergent and submerged); (6) pools (vertically submerged cavity, closed cavity, and recirculating reservoir); (7) meander bends; and (8) confluence of streams. The long-term goal is to use the classification scheme presented to develop predictive mean residence times for different STS using field-measurable hydromorphic parameters and obtain an effective STS mean residence time. The effective STS mean residence time can then be deconvolved from the transient storage residence time distribution (measured from a tracer test) to obtain an estimate of HTS mean residence time.
  • Keywords: Residence time distribution, Open channel flow, Backward facing step, Mountain stream, Pool riffle sequences, Turbulent flow, Large eddy simulation, Secondary flow, Subsurface water exchange, Velocity reversal hypothesis
Resource Type
DOI
Date Available
Date Issued
Citation
  • Jackson, T., Haggerty, R., & Apte, S. (2013). A fluid-mechanics based classification scheme for surface transient storage in riverine environments: Quantitatively separating surface from hyporheic transient storage. Hydrology and Earth System Sciences, 17(7), 2747-2779. doi:10.5194/hess-17-2747-2013
Journal Title
Journal Volume
  • 17
Journal Issue/Number
  • 7
Urheberrechts-Erklärung
Funding Statement (additional comments about funding)
  • This work was supported by the National Science Foundation, EAR 09-43570.
Publisher
Peer Reviewed
Language
Replaces

Beziehungen

Parents:

This work has no parents.

Artikel