Article
 

Deciphering the Cryptic Genome: Genome-wide Analyses of the Rice Pathogen Fusarium fujikuroi Reveal Complex Regulation of Secondary Metabolism and Novel Metabolites

Público Deposited

Contenido Descargable

Descargar PDF
https://ir.library.oregonstate.edu/concern/articles/9w0323837

Descriptions

Attribute NameValues
Creator
Abstract
  • The fungus Fusarium fujikuroi causes "bakanae" disease of rice due to its ability to produce gibberellins (GAs), but it is also known for producing harmful mycotoxins. However, the genetic capacity for the whole arsenal of natural compounds and their role in the fungus' interaction with rice remained unknown. Here, we present a high-quality genome sequence of F. fujikuroi that was assembled into 12 scaffolds corresponding to the 12 chromosomes described for the fungus. We used the genome sequence along with ChIP-seq, transcriptome, proteome, and HPLC-FTMS-based metabolome analyses to identify the potential secondary metabolite biosynthetic gene clusters and to examine their regulation in response to nitrogen availability and plant signals. The results indicate that expression of most but not all gene clusters correlate with proteome and ChIP-seq data. Comparison of the F. fujikuroi genome to those of six other fusaria revealed that only a small number of gene clusters are conserved among these species, thus providing new insights into the divergence of secondary metabolism in the genus Fusarium. Noteworthy, GA biosynthetic genes are present in some related species, but GA biosynthesis is limited to F. fujikuroi, suggesting that this provides a selective advantage during infection of the preferred host plant rice. Among the genome sequences analyzed, one cluster that includes a polyketide synthase gene (PKS19) and another that includes a non-ribosomal peptide synthetase gene (NRPS31) are unique to F. fujikuroi. The metabolites derived from these clusters were identified by HPLC-FTMS-based analyses of engineered F. fujikuroi strains overexpressing cluster genes. In planta expression studies suggest a specific role for the PKS19-derived product during rice infection. Thus, our results indicate that combined comparative genomics and genome-wide experimental analyses identified novel genes and secondary metabolites that contribute to the evolutionary success of F. fujikuroi as a rice pathogen.
  • Keywords: Functional characterization, Species complex, Gibberellin biosynthetic pathway, Aspergillus nidulans, Mass spectrometry, Polyketide synthase genes, Neurospora crassa, Red pigment bikaverin, Mango malformation disease, Fumonisin production
License
Resource Type
DOI
Fecha Disponible
Fecha de Emisión
Citation
  • Wiemann, P., Wagner, D., Bergner, S. V., Connolly, L. R., Fischer, A., Reuter, G., . . . Albermann, S. (2013). Deciphering the cryptic genome: Genome-wide analyses of the rice pathogen fusarium fujikuroi reveal complex regulation of secondary metabolism and novel metabolites. PLoS Pathogens, 9(6), e1003475. doi:10.1371/journal.ppat.1003475
Journal Title
Journal Volume
  • 9
Journal Issue/Number
  • 6
Academic Affiliation
Non-Academic Affiliation
Declaración de derechos
Funding Statement (additional comments about funding)
  • This work was supported by funds of the Deutsche Forschungsgesellschaft (DFG TU 101/16; HU 730/9; GU 1205/1, GU 1205/2) and by grants from the NIH (GM097637) and ACS (RSG-08-030-01-CCG) to MF. UG was funded by the Austrian Science Fund FWF (special research project Fusarium, F3705). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
Publisher
Peer Reviewed
Language
Replaces

Relaciones

Parents:

This work has no parents.

En Collection:

Elementos