Regulation of antimicrobial peptide gene expression by nutrients and byproducts of microbial metabolism Public Deposited

http://ir.library.oregonstate.edu/concern/defaults/bg257f798

This is the author's peer-reviewed final manuscript, as accepted by the publisher. The published article is copyrighted by Springer and can be found at:  http://link.springer.com/journal/394.

Descriptions

Attribute NameValues
Alternative Title
Creator
Abstract or Summary
  • Background: Antimicrobial peptides (AMPs) are synthesized and secreted by immune and epithelial cells that are constantly exposed to environmental microbes. AMPs are essential for barrier defense and deficiencies lead to increased susceptibility to infection. In addition to their ability to disrupt the integrity of bacterial, viral and fungal membranes, AMPs bind lipopolysaccharides, act as chemoattractants for immune cells and bind to cellular receptors and modulate the expression of cytokines and chemokines. These additional biological activities may explain the role of AMPs in inflammatory diseases and cancer. Modulating the endogenous expression of AMPs offers potential therapeutic treatments for infection and disease. Methods: The present review examines published data from both in vitro and in vivo studies reporting effects of nutrients and byproducts of microbial metabolism on the expression of antimicrobial peptide genes in order to highlight an emerging appreciation for the role of dietary compounds in modulating the innate immune response. Results: Vitamins A and D, dietary histone deacetylases and byproducts of intestinal microbial metabolism (butyrate and secondary bile acids) have been found to regulate the expression of AMPs in humans. Vitamin D deficiency correlates with increased susceptibility to infection and supplementation studies indicate an improvement in defense against infection. Animal and human clinical studies with butyrate indicate that increasing expression of AMPs in the colon protects against infection. Conclusion: These findings suggest that diet and/or consumption of nutritional supplements may be used to improve and/or modulate immune function. In addition, byproducts ofgut microbe metabolism could be important for communicating with intestinal epithelial and immune cells, thus affecting the expression of AMPs. This interaction may help establish a mucosal barrier to prevent invasion of the intestinal epithelium by either mutualistic or pathogenic microorganisms.
Resource Type
DOI
Date Available
Date Issued
Citation
  • Campbell, Y., Fantacone, M., & Gombart, A. (2012). Regulation of antimicrobial peptide gene expression by nutrients and by-products of microbial metabolism. European Journal of Nutrition, 51(8), 899-907. doi: 10.1007/s00394-012-0415-4
Academic Affiliation
Series
Keyword
Rights Statement
Funding Statement (additional comments about funding)
Publisher
Peer Reviewed
Language
Replaces
Additional Information
  • description.provenance : Made available in DSpace on 2013-03-27T23:17:50Z (GMT). No. of bitstreams: 2 GombartAdrianBiochemistryBiophysicsRegulationAntimicrobialPeptides(CompatibilityModelFigure1ABC).pdf: 307956 bytes, checksum: 439122f02f0146e9eccc79e834b3a799 (MD5) GombartAdrianBiochemistryBiophysicsRegulationAntimicrobialPeptides.pdf: 365733 bytes, checksum: 6d5720a86555a25a349811bcfa9d168a (MD5) Previous issue date: 2012-12
  • description.provenance : Submitted by Deanne Bruner (deanne.bruner@oregonstate.edu) on 2013-03-27T23:15:09Z No. of bitstreams: 2 GombartAdrianBiochemistryBiophysicsRegulationAntimicrobialPeptides(CompatibilityModelFigure1ABC).pdf: 307956 bytes, checksum: 439122f02f0146e9eccc79e834b3a799 (MD5) GombartAdrianBiochemistryBiophysicsRegulationAntimicrobialPeptides.pdf: 365733 bytes, checksum: 6d5720a86555a25a349811bcfa9d168a (MD5)
  • description.provenance : Approved for entry into archive by Deanne Bruner(deanne.bruner@oregonstate.edu) on 2013-03-27T23:17:50Z (GMT) No. of bitstreams: 2 GombartAdrianBiochemistryBiophysicsRegulationAntimicrobialPeptides(CompatibilityModelFigure1ABC).pdf: 307956 bytes, checksum: 439122f02f0146e9eccc79e834b3a799 (MD5) GombartAdrianBiochemistryBiophysicsRegulationAntimicrobialPeptides.pdf: 365733 bytes, checksum: 6d5720a86555a25a349811bcfa9d168a (MD5)

Relationships

In Administrative Set:
Last modified: 07/11/2017 Default
Citations:

EndNote | Zotero | Mendeley