Article

 

Evaluating WRF-Chem aerosol indirect effects in Southeast Pacific marine stratocumulus during VOCALS-REx Public Deposited

Downloadable Content

Download PDF
https://ir.library.oregonstate.edu/concern/articles/c247dt768

Descriptions

Attribute NameValues
Creator
Abstract
  • We evaluate a regional-scale simulation with the WRF-Chem model for the VAMOS (Variability of the American Monsoon Systems) Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-REx), which sampled the Southeast Pacific's persistent stratocumulus deck. Evaluation of VOCALS-REx ship-based and three aircraft observations focuses on analyzing how aerosol loading affects marine boundary layer (MBL) dynamics and cloud microphysics. We compare local time series and campaign-averaged longitudinal gradients, and highlight differences in model simulations with (W) and without (NW) wet deposition processes. The higher aerosol loadings in the NW case produce considerable changes in MBL dynamics and cloud microphysics, in accordance with the established conceptual model of aerosol indirect effects. These include increase in cloud albedo, increase in MBL and cloud heights, drizzle suppression, increase in liquid water content, and increase in cloud lifetime. Moreover, better statistical representation of aerosol mass and number concentration improves model fidelity in reproducing observed spatial and temporal variability in cloud properties, including top and base height, droplet concentration, water content, rain rate, optical depth (COD) and liquid water path (LWP). Together, these help to quantify confidence in WRF-Chem's modeled aerosol-cloud interactions, especially in the activation parameterization, while identifying structural and parametric uncertainties including: irreversibility in rain wet removal; overestimation of marine DMS and sea salt emissions, and accelerated aqueous sulfate conversion. Our findings suggest that WRF-Chem simulates marine cloud-aerosol interactions at a level sufficient for applications in forecasting weather and air quality and studying aerosol climate forcing, and may do so with the reliability required for policy analysis.
  • Keywords: Cellular structures, Low level jet, Hydrogen peroxide, Regional experiment, Model development, Large eddy simulation, Cloud micropysics, General circulation, Atmospheric sulfur, Boundary layer
  • This is the publisher’s final pdf. The published article is copyrighted by European Geosciences Union and can be found at: http://www.egu.eu/.
Resource Type
DOI
Date Available
Date Issued
Citation
  • Saide, P., Collett, J., Benedict, K., de Szoeke, S., Hawkins, L., Allen, G., . . . . (2012). Evaluating WRF-chem aerosol indirect effects in southeast pacific marine stratocumulus during VOCALS-REx. Atmospheric Chemistry and Physics , 12(6), 3045-3064. doi: 10.5194/acp-12-3045-2012
Journal Title
Journal Volume
  • 12
Journal Issue/Number
  • 6
Rights Statement
Funding Statement (additional comments about funding)
  • We also thank the UK Natural Environment Research Council (NERC) for funding the VOCALS UK contingent to the project (grant ref: NE/F019874/1) and the NERC Facility for Airborne and Atmospheric Measurement (FAAM) and DirectFlight and Avalon for operational support of the BAe-146 aircraft.This work was carried out with the aid of NSF grants 0748012 and0745986, grant number UL1RR024979 from the National Center for Research Resources (NCRR), a part of the National Institutes of Health (NIH), FONDECYT Iniciación grant 11090084, and Fulbright-CONICYT scholarship number 15093810.
Publisher
Peer Reviewed
Language
Replaces

Relationships

Parents:

This work has no parents.

Items