Article

 

Paleoceanography of the Eastern Equatorial Pacific during the Neogene : synthesis of Leg 138 drilling results Public Deposited

Downloadable Content

Download PDF
https://ir.library.oregonstate.edu/concern/articles/d504rm92j

Descriptions

Attribute NameValues
Creator
Abstract
  • The primary objective of Leg 138 was to provide detailed information about the ocean's response to global climate change during the Neogene. Two north south transects were drilled (95° and 110°W) within the region of equatorial divergence driven upwelling (and thus high accumulation rates and resolution) and spanning the major equatorial ocean current boundaries (and thus recording a high amplitude signal of the response of the sediment to climatically and/or tectonically driven changes in ocean circulation). The Neogene is marked by a number of well known climatic and tectonic events (the closing of the Isthmus of Panama, the onset of North Atlantic Deep Water (NADW), the rapid uplift of the Himalayas, the major intensification of Northern Hemisphere glaciation), and the response of the ocean before and after these events was a key focus of Leg 138 drilling. To address these objectives at the highest resolution possible, the Leg 138 scientific staff developed a number of new shipboard strategies and analytical procedures. These included the real time analysis of the near continuous gamma ray attenuation porosity evaluator (GRAPE) and susceptibility profiles produced by the multisensor track (MST) on unsplit cores to monitor core recovery and, if necessary, to modify the drilling strategy to ensure proper offset of coring gaps; the collection of near continuous color reflectance data on split cores; the logging of the first hole drilled at each site to optimize drilling and sampling strategies for subsequent holes; and the use of multiple continuous records to unambiguously construct complete composite sections for each site. The complete, continuous records provided by the GRAPE (with a temporal resolution of often yr), in conjunction with an excellent microfossil stratigraphy and often excellent magnetostratigraphy, allowed for astronomical tuning of the stratigraphic record and resulted in a set of internally consistent, high resolution age models that provide a secure, absolute time scale for the past 6 m.y. For the period before 6 m.y., the absolute time calibration is less secure, but it is still better than any previously offered. The high resolution stratigraphic framework of Leg 138 provided new insight into the previously ambiguous tectonic history of the region. By assuming that maximum sedimentation rates along the north south transect would be expected at the equator, the Leg 138 stratigraphy supports the 1985 work of Cox and Engerbretson, which calls for two different poles of rotation of the Pacific Plate during the interval 0-20 Ma. The Leg 138 plate reconstructions also support several previously hypothesized ridge crest jumps and a slowing of the absolute motion of the Nazca Plate at about 5 Ma. Although Leg 138 data that predates about 13 Ma is limited, the impression that one can gain from these data is that the eastern equatorial Pacific was characterized by relatively high carbonate concentrations and accumulation rates before about 11 Ma. This pattern was interrupted occasionally by rapid massive outpourings of near monospecific laminated diatom oozes that probably represent the formation of massive mats along strong surface water fronts. The laminated diatom oozes (LDO) continue to be present in the Leg 138 record (many of them being expressed as seismic reflections) until about 4.4 Ma. Carbonate accumulation rates begin to decline slowly between 11 and 9.8 Ma, when, at about 9.5 Ma, a near complete loss of carbonate (the "carbonate crash") takes place everywhere in the Leg 138 region (and beyond), except at the westernmost sites close to the equator. The "carbonate crash" was a time of fundamental change for the eastern equatorial Pacific, and perhaps for most of the ocean basins. Unlike many of the carbonate variations that precede and postdate it, this "crash" represents a major dissolution event whose effects can be traced seismically in the central and western Pacific. The changes in bottom water chemistry associated with this event (or series of events) appear to be related to the early phases of the closing of the Panama Gateway. The role of NADW initiation and intensification for controlling carbonate accumulation in the eastern equatorial Pacific is still not resolved; however, ocean modeling demonstrates that the closing of the Panama Gateway may also have a direct influence on NADW production. Therefore, the effects of changes in the Panama Gateway sill depth and the production of NADW may be manifested in the history of eastern equatorial Pacific sedimentation. The "carbonate crash" was followed by a recovery of the carbonate system (except in the Guatemala and Peru basins, which never recovered) that led up to the late Miocene/ early Pliocene sedimentation rate maxima, during which equatorial sedimentation rates are as much as five times greater than those of the late Pliocene or Pleistocene. Examination of modern productivity/ preser vation relationships implies that the sedimentation rate maximum was the result of enhanced productivity. The distribution of eolian sediments and isotopic gradients, along with an analysis of the modes of variance in carbonate deposition over the last 6 m.y., suggest a more northerly position of the Intertropical Convergence Zone (ITCZ), a stronger north south gradient across the equator, and a more zonal circulation focused along the equator during the time of maximum sedimentation. The mechanisms suggested for these changes in circulation patterns include the response of the eastern equatorial Pacific to the closing of the Isthmus of Panama, as well as a global increase in the flux of Ca and Si into the oceans, a possible response to evolution of the Himalayas and the Tibetan Plateau. In an effort to understand the response of the climate system to external (orbital) forcing, 6-m.y.-long, continuous records of carbonate (derived from GRAPE), δ¹⁸O and insolation were analyzed and compared. Evolutionary spectral calculations of the variance and coherence among these records indicate that the insolation record is dominated by precessional frequencies, but that the relative importance of the two precessional frequencies has changed significantly over the last 6 m.y. In general, precessional forcing is not found in the carbonate or isotopic records. In the tilt band, however, a linear response is present between solar forcing and the carbonate and isotope records over some intervals. The carbonate record appears to be tightly coupled to the tilt component of insolation before about 1.9 Ma; however, the isotope record does not begin to show sensitivity to orbital tilt until about 4.5 Ma, the time of significant changes in sedimentation patterns in the eastern equatorial Pacific. Only during the last 500,000 yr do all frequencies respond in a similar manner; we also see a marked increase in the response of the isotopic record to orbital forcing (including 100,000- and 400,000-yr periods).
Resource Type
DOI
Date Available
Date Issued
Citation
  • Pisias, N.G., L. Mayer, A.C. Mix (1995). Paleoceanography of the Eastern Equatorial Pacific during the Neogene: Synthesis of Leg 138 Drilling Results <http://www.coas.oregonstate.edu/facultypages/mix/Pisias_etal_1995_ODP138_SR .pdf>. In: Pisias, N.G., L. Mayer, T. Janecek, A. Palmer-Julson, T.H. van Andel (eds.), /Proceedings of the Ocean Drilling Program, Scientific Results,/ 138, College Station, TX (Ocean Drilling Program), 5-24.
Journal Title
Journal Volume
  • 138
Rights Statement
Publisher
Language
Replaces

Relationships

Parents:

This work has no parents.

Items