An inducible kras[superscript v]¹² transgenic zebrafish model for liver tumorigenesis and chemical drug screening Public Deposited

http://ir.library.oregonstate.edu/concern/defaults/fx719p014

This is the publisher’s final pdf. The published article is copyrighted by Company of Biologists and can be found at:  http://www.biologists.com/.

Descriptions

Attribute NameValues
Creator
Abstract or Summary
  • Because Ras signaling is frequently activated by major hepatocellular carcinoma etiological factors, a transgenic zebrafish constitutively expressing the kras(V12) oncogene in the liver was previously generated by our laboratory. Although this model depicted and uncovered the conservation between zebrafish and human liver tumorigenesis, the low tumor incidence and early mortality limit its use for further studies of tumor progression and inhibition. Here, we employed a mifepristone-inducible transgenic system to achieve inducible kras(V12) expression in the liver. The system consisted of two transgenic lines: the liver-driver line had a liver-specific fabp10 promoter to produce the LexPR chimeric transactivator, and the Ras-effector line contained a LexA-binding site to control EGFP-kras(V12) expression. In double-transgenic zebrafish (driver-effector) embryos and adults, we demonstrated mifepristone-inducible EGFP-kras(V12) expression in the liver. Robust and homogeneous liver tumors developed in 100% of double-transgenic fish after 1 month of induction and the tumors progressed from hyperplasia by 1 week post-treatment (wpt) to carcinoma by 4 wpt. Strikingly, liver tumorigenesis was found to be 'addicted' to Ras signaling for tumor maintenance, because mifepristone withdrawal led to tumor regression via cell death in transgenic fish. We further demonstrated the potential use of the transparent EGFP-kras(V12) larvae in inhibitor treatments to suppress Ras-driven liver tumorigenesis by targeting its downstream effectors, including the Raf-MEK-ERK and PI3K-AKT-mTOR pathways. Collectively, this mifepristone-inducible and reversible kras(V12) transgenic system offers a novel model for understanding hepatocarcinogenesis and a high-throughput screening platform for anti-cancer drugs.
Resource Type
DOI
Date Available
Date Issued
Citation
  • A.T. Nguyen, A. Emelyanov, C.H.V. Koh, J.M. Spitsbergen, S. Parinov, Z. Gong An inducible kras[superscript v]¹² transgenic zebrafish model for liver tumorigenesis and chemical drug screening Disease Models & Mechanisms, 5 (2012), p. 63
Academic Affiliation
Series
Keyword
Rights Statement
Funding Statement (additional comments about funding)
Publisher
Language
Replaces
Additional Information
  • description.provenance : Submitted by Deborah Campbell (deborah.campbell@oregonstate.edu) on 2012-07-16T23:19:05Z No. of bitstreams: 3 license_rdf: 22765 bytes, checksum: 56265f5776a16a05899187d30899c530 (MD5) license_text: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) SpitsbergenJanMMicrobiologyInducibleKrasTransgenic.pdf: 2841738 bytes, checksum: f709c68be7f853da91bdcc44cfa7f119 (MD5)
  • description.provenance : Approved for entry into archive by Sue Kunda(sue.kunda@oregonstate.edu) on 2012-07-17T16:39:41Z (GMT) No. of bitstreams: 3 license_rdf: 22765 bytes, checksum: 56265f5776a16a05899187d30899c530 (MD5) license_text: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) SpitsbergenJanMMicrobiologyInducibleKrasTransgenic.pdf: 2841738 bytes, checksum: f709c68be7f853da91bdcc44cfa7f119 (MD5)
  • description.provenance : Made available in DSpace on 2012-07-17T16:39:41Z (GMT). No. of bitstreams: 3 license_rdf: 22765 bytes, checksum: 56265f5776a16a05899187d30899c530 (MD5) license_text: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) SpitsbergenJanMMicrobiologyInducibleKrasTransgenic.pdf: 2841738 bytes, checksum: f709c68be7f853da91bdcc44cfa7f119 (MD5) Previous issue date: 2012-01

Relationships

In Administrative Set:
Last modified: 07/21/2017

Downloadable Content

Download PDF
Citations:

EndNote | Zotero | Mendeley

Items