Crystal structure beneath the central Oregon convergent margin from potential-field modeling: Evidence for a buried basement ridge in local contact with a seaward dipping backstop Public Deposited

http://ir.library.oregonstate.edu/concern/defaults/g732df98p

Copyrighted by American Geophysical Union.

Descriptions

Attribute NameValues
Creator
Abstract or Summary
  • Models of magnetic and gravity anomalies along two E-W transects offshore central Oregon, one of which is coincident with a detailed velocity model, provide quantitative limits on the structure of the subducting oceanic crust and the crystalline backstop. The models indicate that the backstop-forming western edge of the Siletz terrane, an oceanic plateau that was accreted to North America ~50 million years ago, has a seaward dip of less than 60°3. Seismic, magnetic, and gravity data are compatible with no more than 2 km of subducted sediments between the Siletz terrane and the underlying crystalline crust of the Juan de Fuca plate. The data also suggest the presence of a N-S trending, 200-km-long basaltic ridge buried beneath the accretionary complex from about 43°N to 45°N. Although the height and width of this ridge probably vary along strike, it may be up to 4 km high and several kilometers wide in places and appears to be locally in contact with the Siletz terrane beneath Heceta Bank. Several models for the origin of this ridge are discussed. These include: a sliver of Siletz terrane detached from the main Siletz terrane during a late Eocene episode of strike-slip faulting; imbrications and thickening of subducted oceanic crust in place; an aseismic ridge rafted in on the subducting oceanic crust during the past 1.2 million years; and a series of ridges and/or seamounts rafted in over a longer period of time and transferred from the subducting plate to the overlying plate. The last model is the most consistent with the complicated history of local uplift, subsidence, and slope instability recorded in the ridges, basins, and banks of this part of the margin. We speculate that the massive seaward dipping western edge of the Siletz terrane in this region inhibits subduction of seamounts and sediments, resulting in formation of buried ridge as the accumulated flotsam and jetsom of subduction. This process may also be responsible for thickening of lower accretionary complex material, over-steepening of slopes leading to massive slumping, and north-south extension through strike-slip faulting in the accretionary complex to the west of the buried ridge. Regardless of its origin, the ridge may currently be acting as an asperity inhibiting subduction.
Resource Type
DOI
Date Available
Date Issued
Citation
  • Fleming, S., and A. Tréhu (1999), Crustal structure beneath the central Oregon convergent margin from potential‐field modeling: Evidence for a buried basement ridge in local contact with a seaward dipping backstop, J. Geophys. Res., 104(B9), 20431-20447.
Rights Statement
Publisher
Replaces
Additional Information
  • description.provenance : Made available in DSpace on 2010-04-26T21:41:23Z (GMT). No. of bitstreams: 1 Fleming and Trehu JGR 1999.pdf: 2103204 bytes, checksum: e7e81067b0c6185a93a737e9ac7afa78 (MD5) Previous issue date: 1999-09-10
  • description.provenance : Submitted by David Moynihan (dmscanner@gmail.com) on 2010-04-26T20:11:17Z No. of bitstreams: 1 Fleming and Trehu JGR 1999.pdf: 2103204 bytes, checksum: e7e81067b0c6185a93a737e9ac7afa78 (MD5)
  • description.provenance : Approved for entry into archive by Linda Kathman(linda.kathman@oregonstate.edu) on 2010-04-26T21:41:23Z (GMT) No. of bitstreams: 1 Fleming and Trehu JGR 1999.pdf: 2103204 bytes, checksum: e7e81067b0c6185a93a737e9ac7afa78 (MD5)
  • Journal of Geophysical Research
  • Vol. 104 No. B9 (1999)

Relationships

In Administrative Set:
Last modified: 12/07/2017

Downloadable Content

Download PDF
Citations:

EndNote | Zotero | Mendeley

Items