Surface Flux Observations on the Southeastern Tropical Pacific Ocean and Attribution of SST Errors in Coupled Ocean–Atmosphere Models Public Deposited

http://ir.library.oregonstate.edu/concern/defaults/hm50tx549

Descriptions

Attribute NameValues
Creator
Abstract or Summary
  • A new dataset synthesizes in situ and remote sensing observations from research ships deployed to the southeastern tropical Pacific stratocumulus region for 7 years in boreal fall. Surface meteorology, turbulent and radiative fluxes, aerosols, cloud properties, and rawinsonde profiles were measured on nine ship transects along 20°S from 75° to 85°W. Fluxes at the ocean surface are essential to the equilibrium SST. Solar radiation is the only warming net heat flux, with 180–200 W m⁻² in boreal fall. The strongest cooling is evaporation (60–100 W m⁻²), followed by net thermal infrared radiation (30 W m⁻²) and sensible heat flux (<10 W m⁻²). The 70 W m⁻² imbalance of heating at the surface reflects the seasonal SST tendency and some 30 W m⁻² cooling that is mostly due to ocean transport. Coupled models simulate significant SST errors in the eastern tropical Pacific Ocean. Three different observation-based gridded ocean surface flux products agree with ship and buoy observations, while fluxes simulated by 15 Coupled Model Intercomparison Project phase 3 [CMIP3; used for the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report] general circulation models have relatively large errors. This suggests the gridded observation-based flux datasets are sufficiently accurate for verifying coupled models. Longwave cooling and solar warming are correlated among model simulations, consistent with cloud radiative forcing and low cloud amount differences. In those simulations with excessive solar heating, elevated SST also results in larger evaporation and longwave cooling to compensate for the solar excess. Excessive turbulent heat fluxes (10–90 W m⁻² cooling, mostly evaporation) are the largest errors in simulations once the compensation between solar and longwave radiation is taken into account. In addition to excessive solar warming and evaporation, models simulate too little oceanic residual cooling in the southeastern tropical Pacific Ocean.
Resource Type
DOI
Date Available
Date Issued
Citation
  • de Szoeke, Simon P., Christopher W. Fairall, Daniel E. Wolfe, Ludovic Bariteau, Paquita Zuidema, 2010: Surface Flux Observations on the Southeastern Tropical Pacific Ocean and Attribution of SST Errors in Coupled Ocean–Atmosphere Models. Journal of Climate, 23, 4152–4174.
Keyword
Rights Statement
Funding Statement (additional comments about funding)
Publisher
Peer Reviewed
Replaces
Additional Information
  • Vol. 23 no. 15.
  • Journal of Climate
  • description.provenance : Made available in DSpace on 2012-02-13T21:31:21Z (GMT). No. of bitstreams: 1 deSzoekeSimonP.CEOAS.SurfaceFluxObservations.pdf: 2140278 bytes, checksum: cdbb2280ea7dd3e5c5cd165458350f8f (MD5) Previous issue date: 2010-08
  • description.provenance : Submitted by Deborah Campbell (deborah.campbell@oregonstate.edu) on 2012-02-13T21:31:21Z No. of bitstreams: 1 deSzoekeSimonP.CEOAS.SurfaceFluxObservations.pdf: 2140278 bytes, checksum: cdbb2280ea7dd3e5c5cd165458350f8f (MD5)

Relationships

In Administrative Set:
Last modified: 12/06/2017

Downloadable Content

Download PDF
Citations:

EndNote | Zotero | Mendeley

Items