Estimating Riparian Understory Vegetation Cover with Beta Regression and Copula Models Public Deposited

http://ir.library.oregonstate.edu/concern/defaults/pv63g069s

Descriptions

Attribute NameValues
Creator
Abstract or Summary
  • Understory vegetation communities are critical components of forest ecosystems. As a result, the importance of modeling understory vegetation characteristics in forested landscapes has become more apparent. Abundance measures such as shrub cover are bounded between 0 and 1, exhibit heteroscedastic error variance, and are often subject to spatial dependence. These distributional features tend to be ignored when shrub cover data are analyzed. The beta distribution has been used successfully to describe the frequency distribution of vegetation cover. Beta regression models ignoring spatial dependence (BR) and accounting for spatial dependence (BRdep) were used to estimate percent shrub cover as a function of topographic conditions and overstory vegetation structure in riparian zones in western Oregon. The BR models showed poor explanatory power (pseudo-R² ≤ 0.34) but outperformed ordinary least-squares (OLS) and generalized least-squares (GLS) regression models with logit-transformed response in terms of mean square prediction error and absolute bias. We introduce a copula (COP) model that is based on the beta distribution and accounts for spatial dependence. A simulation study was designed to illustrate the effects of incorrectly assuming normality, equal variance, and spatial independence. It showed that BR, BRdep, and COP models provide unbiased parameter estimates, whereas OLS and GLS models result in slightly biased estimates for two of the three parameters. On the basis of the simulation study, 93–97% of the GLS, BRdep, and COP confidence intervals covered the true parameters, whereas OLS and BR only resulted in 84–88% coverage, which demonstrated the superiority of GLS, BRdep, and COP over OLS and BR models in providing standard errors for the parameter estimates in the presence of spatial dependence. FOR. SCI. 57(3):212–221.
Resource Type
Date Available
Date Issued
Citation
  • Eskelson, B.N.I., L. Madsen, J. Hagar, and H. Temesgen. (2011) Estimating riparian understory vegetation cover with beta regression and copula models. Forest Science. 57(3): 212-221.
Academic Affiliation
Series
Keyword
Rights Statement
Publisher
Language
Replaces
Additional Information
  • description.provenance : Approved for entry into archive by Deborah Campbell(deborah.campbell@oregonstate.edu) on 2012-04-30T22:20:25Z (GMT) No. of bitstreams: 1 Eskelson, B.N.I., L. Madsen, J. Hagar, and H. Temesgen. (in press) Estimating riparian understory vegetation cover with beta regression and copula models. Forest Science. 57 212-221.pdf: 180946 bytes, checksum: 9712a631f6fbe81ad2be8592cdf353c0 (MD5)
  • description.provenance : Submitted by Logan Bernart (logan.bernart@gmail.com) on 2012-03-09T20:54:50Z No. of bitstreams: 1 Eskelson, B.N.I., L. Madsen, J. Hagar, and H. Temesgen. (in press) Estimating riparian understory vegetation cover with beta regression and copula models. Forest Science. 57 212-221.pdf: 180946 bytes, checksum: 9712a631f6fbe81ad2be8592cdf353c0 (MD5)
  • description.provenance : Made available in DSpace on 2012-04-30T22:20:25Z (GMT). No. of bitstreams: 1 Eskelson, B.N.I., L. Madsen, J. Hagar, and H. Temesgen. (in press) Estimating riparian understory vegetation cover with beta regression and copula models. Forest Science. 57 212-221.pdf: 180946 bytes, checksum: 9712a631f6fbe81ad2be8592cdf353c0 (MD5) Previous issue date: 2011-06

Relationships

In Administrative Set:
Last modified: 07/06/2017

Downloadable Content

Download PDF
Citations:

EndNote | Zotero | Mendeley