Ecophysiological interpretation of oxygen consumption rates and enzymatic activities of deep-sea copepods Public Deposited

http://ir.library.oregonstate.edu/concern/defaults/x920fz43k

Descriptions

Attribute NameValues
Creator
Abstract or Summary
  • We measured oxygen consumption rates, the activities of citrate synthase (CS) and lactate dehydrogenase (LDH) and protein contents for over 30 species of deep-sea pelagic Copepoda. The lowest oxygen consumption rates were measured in Euaugaptilus magnus and the highest rates were measured in Paraeuchaeta tonsa. Weight-specific oxygen consumption rates declined significantly with increasing size of the organism. None of the biochemical parameters were particularly good predictors of metabolic rate. Although linear regressions of LDH activity and protein content against oxygen consumption were statistically significant, R2 values for the relationships were very low. CS activity was not significantly correlated with metabolic rate. The highest CS activities were measured in Pleurontarnrna abdominalis and Calanus pacificus, which were the 2 smallest and shallowest-living species in our investigation. The lowest CS activities were measured in Euaugaptilus antarcticus and Pachyptilus pacificus. Disseta scopularis had the highest LDH activities and Onchocalanus rnagnus had the lowest LDH activities. Over all specimens, there were statistically significant increases in weight-specific activities of CS and LDH as a function of body mass. There was much greater variation in glycolytic potential as indicated by LDH activity than in CS activities. Epipelagic copepods apparently rely less on glycolytic energy sources than do mesopelagic and bathypelagic copepods. Higher LDH activities of larger Copepoda may indicate a greater dependence on LDH for burst swimming in large species compared with smaller ones or a reliance on glycolytic abilities for sustained swimming during vertical migrations. Our enzyme data do not support the suggestion that high LDH activities are adaptations to the very low oxygen concentrations found in the oxygen minimum layer. Enzymatic ratios were used to interpret lifestyle, and deep-sea copepods fell into 3 metabolic groups, 'muscular sinkers', 'thin-muscled floaters' and 'giants', that were related to morphological pattern and behaviour. The effect of hydrostatic pressure on the metabolic rate of an undescribed, but very common, species of Megacalanus was investigated and found to be non-significant. Copepods do not display the depth-related declines in metabolic rates that are found in shrimps, fishes and cephalopods.
Resource Type
Date Available
Date Issued
Citation
  • Mar Ecol Prog Ser, 1998, 168:95-107
Keyword
Rights Statement
Funding Statement (additional comments about funding)
Publisher
Language
Replaces
Additional Information
  • description.provenance : Made available in DSpace on 2009-11-18T19:47:34Z (GMT). No. of bitstreams: 1 MarEcolProgressSeries 1998 168 95-107.pdf: 1326986 bytes, checksum: b20acf5c200d6f9b2f272816b9535c12 (MD5) Previous issue date: 1998
  • description.provenance : Submitted by Linda Lamb (llamb@coas.oregonstate.edu) on 2009-11-18T19:40:46Z No. of bitstreams: 1 MarEcolProgressSeries 1998 168 95-107.pdf: 1326986 bytes, checksum: b20acf5c200d6f9b2f272816b9535c12 (MD5)
  • description.provenance : Approved for entry into archive by Linda Lamb(llamb@coas.oregonstate.edu) on 2009-11-18T19:47:34Z (GMT) No. of bitstreams: 1 MarEcolProgressSeries 1998 168 95-107.pdf: 1326986 bytes, checksum: b20acf5c200d6f9b2f272816b9535c12 (MD5)
ISSN
  • 0171-8630

Relationships

In Administrative Set:
Last modified: 07/24/2017

Downloadable Content

Download PDF
Citations:

EndNote | Zotero | Mendeley

Items