Alkaline and peraluminous intrusives in the Clarno Formation around Mitchell, Oregon : ramifications on magma genesis and subduction tectonics Public Deposited

http://ir.library.oregonstate.edu/concern/graduate_thesis_or_dissertations/02870z62q

Descriptions

Attribute NameValues
Creator
Abstract or Summary
  • The Clarno Formation is a series of volcanic, volcaniclastic, and related intrusive rocks located in central Oregon. It is the westernmost extent of a broader Eocene magmatic belt that covers much the western United States. The magmatic belt stretches eastward from Oregon to western South Dakota, and from the Canadian Yukon to northern Nevada. While once attributed to subduction of the Farallon Plate under North America, more recent work suggests that a more complex tectonic regime involving extension was in place during the early Cenozoic. In the vicinity of Mitchell, Oregon, the Clarno Formation is well represented along with Mesozoic metamorphic and sedimentary units, and younger Tertiary volcanic and volcaniclastic units. In this area, Clarno volcanic activity occurred from ~52-42 Ma, producing mostly andesites and related volcaniclastic rocks. The Mitchell area is also underlain by related intrusive bodies ranging from basalt to rhyolite in composition. The Clarno was most active at ~49 Ma, and is dominantly calcalkaline. In addition, there are several coeval alkaline and peraluminous intrusives also scattered throughout the Clamo Formation. While these suites are less voluminous than the calc-alkaline magmatism, they offer insight into the tectonic and magmatic processes at work in this area during the Eocene. Whereas silicic intrusions are common in the Clarno, the high-silica rhyolite dike on the south face of Scott Butte is unusual due to its large garnet phenocrysts. The existence of primary garnet in rhyolitic magmas precludes middle to upper crustal genesis, a common source for silicic magmas. ⁴⁰Ar/³⁹Ar age determinations of the biotite indicate an age of ~51 Ma. This is after andesitic volcanism had commenced, but prior to the most active period of extrusion. The presence of the almandine garnet indicates that the dike represents partial melting of lower crustal (18-25 km) material. The presence of a high field strength element (HFSE) depletion commonly associated with subduction are magmatism indicates that either the source material had previously been metasomatised, or that some subduction melts/fluids (heat source) mixed with the crustal melt. Two alkaline suites, a high-K calc-alkaline basanite (Marshall and Corporate Buttes) and alkaline minette/kersantite lamprophyres (near Black Butte and Mud Creek), were emplaced ~49 Ma, during the height of calc-alkaline activity. The basanite lacks the HFSE depletion common in the other Clarno rocks. Instead it has a HIMU-type (eg. St Helena) ocean island basalt affinity, resulting from partial melting of enriched asthenospheric mantle. In contrast, the lamprophyres represent hydrous partial melts of metasomatized litho spheric mantle veins and bodies. Alkaline magmatism was not limited to the most active periods of calc-alkaline activity. The emplacement of an alkali basalt (Hudspeth Mill intrusion) at ~45 Ma occurred four million years after the largest pulse of volcanism, but still during calcalkaline activity. This alkali basalt represents partial melting of metasomatized lithospheric mantle. The occurrence of these alkaline suites coeval with the calc-alkaline activity is significant in that it disputes prior subduction theories for the broader Eocene magmatism that are based on spatial and temporal variations from calc-alkaline to alkaline magmatism. These suites also give further insight into the complex tectonic regime that existed in Oregon during the Eocene. The occurrence of asthenospheric melts not caused by fluid fluxing, along with lower lithospheric alkaline melts, are normally associated with extension. Extension provides these magmas with both the mechanism for melting, and the ability to reach shallow crust with little or no contamination. Extension is in agreement with both White and Robinson's (1992) interpretation that most Clarno Formation deposition occurred in extensional basins, and with other provinces in the broader Eocene magmatic belt.
Resource Type
Date Available
Date Copyright
Date Issued
Degree Level
Degree Name
Degree Field
Degree Grantor
Commencement Year
Advisor
Academic Affiliation
Non-Academic Affiliation
Subject
Rights Statement
Peer Reviewed
Language
Digitization Specifications
  • File scanned at 300 ppi (Monochrome, 8-bit Grayscale, 24-bit Color) using ScandAll PRO 1.8.1 on a Fi-6670 in PDF format. CVista PdfCompressor 4.0 was used for pdf compression and textual OCR.
Replaces
Additional Information
  • description.provenance : Made available in DSpace on 2012-06-20T20:42:08Z (GMT). No. of bitstreams: 1 AppelMichael2002.pdf: 15893001 bytes, checksum: 222b5c492f8c5860d690ce49c9a6c216 (MD5) Previous issue date: 2001-06-15
  • description.provenance : Approved for entry into archive by Patricia Black(patricia.black@oregonstate.edu) on 2012-06-15T16:47:45Z (GMT) No. of bitstreams: 1 AppelMichael2002.pdf: 15893001 bytes, checksum: 222b5c492f8c5860d690ce49c9a6c216 (MD5)
  • description.provenance : Submitted by Kirsten Clark (kcscannerosu@gmail.com) on 2012-05-31T22:32:18Z No. of bitstreams: 1 AppelMichael2002.pdf: 15893001 bytes, checksum: 222b5c492f8c5860d690ce49c9a6c216 (MD5)
  • description.provenance : Approved for entry into archive by Patricia Black(patricia.black@oregonstate.edu) on 2012-06-20T20:42:08Z (GMT) No. of bitstreams: 1 AppelMichael2002.pdf: 15893001 bytes, checksum: 222b5c492f8c5860d690ce49c9a6c216 (MD5)

Relationships

In Administrative Set:
Last modified: 08/09/2017

Downloadable Content

Download PDF
Citations:

EndNote | Zotero | Mendeley

Items