Graduate Thesis Or Dissertation
 

Bioenergetics-based predator-prey relationships between piscivorous birds and juvenile salmonids in the Columbia River estuary

Public Deposited

Downloadable Content

Download PDF
https://ir.library.oregonstate.edu/concern/graduate_thesis_or_dissertations/08612r341

Descriptions

Attribute NameValues
Creator
Abstract
  • This dissertation focuses on the predator-prey relationship between two species of avian predators, Caspian terns (Hydroprogne caspia) and double-crested cormorants (Phalacrocorax auritus), and one of their important prey types, juvenile salmonids (Oncorhynchus spp.), in the Columbia River estuary of Oregon and Washington states during the period 1998 – 2007. I used a data-rich bioenergetics framework to estimate juvenile salmonid consumption by these two avian predators, assessed impacts to at-risk salmonid populations by estimating salmonid mortality rates due to avian predation, and estimated potential demographic benefits to salmonids if avian predation were reduced. The managed relocation of the Caspian tern colony from Rice Island to East Sand Island, lower in the Columbia River estuary, reduced tern predation on salmonids from over 11 million smolts consumed annually to 4 – 7 million, but those benefits accrued primarily to sub-yearling Chinook salmon (O. tshawytscha). Combined consumption of juvenile salmonids by Caspian terns and double-crested cormorants in the Columbia River estuary was ca. 7 – 15 million smolts per year during 2006-2007, causing an 8 – 17% mortality rate among smolts migrating through the estuary, with higher mortality rates for steelhead (O. mykiss) and coho salmon (O. kisutch). Under a potential management scenario to reduce avian predation by both species, improvements in the average annual population growth rate (λ) of salmonids ranged from 0.4% for sub-yearling Chinook to 3.1% for coho. These improvements are generally less than what is possible from altered hydropower system operation within the Columbia Basin for salmonid populations that are more severely affected by dams. For a few salmonid populations, reduced avian predation might contribute to stabilizing the population (λ = 1), but would need to be part of a broader recovery strategy to ensure population growth and recovery (λ > 1). Climate was an important factor modulating Caspian tern predation on salmonids, with greater consumption of smolts occurring in years of cooler ocean conditions and higher Columbia River flows. Climate did not contribute to variation in consumption of salmonids by cormorants, perhaps due to the larger effect of growth in the size of the cormorant colony during the study period. Due to current trends in colony size (terns: stable, cormorants: increasing) and the planned dispersal of a portion of the tern population, cormorant predation will likely be a more significant mortality factor for Columbia Basin salmonids in the future than will tern predation. A critical unknown factor remains; that is the degree to which reductions in avian predation on salmonids might be compensated for by other salmonid mortality factors.
License
Resource Type
Date Available
Date Issued
Degree Level
Degree Name
Degree Field
Degree Grantor
Commencement Year
Advisor
Committee Member
Academic Affiliation
Non-Academic Affiliation
Subject
Rights Statement
Publisher
Peer Reviewed
Language
Replaces

Relationships

Parents:

This work has no parents.

In Collection:

Items