Graduate Thesis Or Dissertation

 

Web-based Deep Segmentation of Building Structure Public Deposited

Downloadable Content

Download PDF
https://ir.library.oregonstate.edu/concern/graduate_thesis_or_dissertations/0c483q94d

Descriptions

Attribute NameValues
Creator
Abstract
  • Deep learning and neural network has been widely used in research, deep learning has empowered many tasks such as point clouds segmentation and shape recognition. One of the main advantages of deep interaction point cloud segmentation is that it allows the feature extraction can be learned through neural network based on a large amount of dataset. Our focus is large point clouds, we propose a variety of measuring tools to analyze and validate raw point cloud data, which is the web-based deep segmentation user interaction on large point clouds. It allows users to view data sets with millions of points, from sources such as building structure and indoor scene, in standard web browsers, and processing 3D point clouds deep segmentation with the neural network. The interaction tools can assist to distinguish building structure and non-building structure in one room.
Contributor
License
Resource Type
Date Issued
Degree Level
Degree Name
Degree Field
Degree Grantor
Commencement Year
Advisor
Committee Member
Academic Affiliation
Rights Statement
Publisher
Peer Reviewed
Language

Relationships

Parents:

This work has no parents.

In Collection:

Items