Statistical prediction intervals Public Deposited

http://ir.library.oregonstate.edu/concern/graduate_thesis_or_dissertations/0p096925c

Descriptions

Attribute NameValues
Creator
Abstract or Summary
  • In many statistical applications an interval is needed that will contain the values of all J future observations with some preassigned probability. For example, suppose twenty rockets have been fired in a test program and three have failed. If two more test programs are to be conducted, an interval that will, with probability 1-α, contain the maximum number of failures in either of the two programs is called an a confidence level prediction interval. In this thesis a general procedure is given for predicting future observations when there is one unknown parameter and other conditions are satisfied. The normal and the gamma distributions are used as examples to illustrate the procedure in the continuous case. It is shown that Poisson random variables can be predicted using the negative multinomial distribution. Tables of negative multinomial probabilities are provided and approximation procedures are suggested. It is also shown that negative binomial random variables can be predicted using the multivariate beta negative binomial and binomial random variables can be predicted using the multivariate negative hypergeometric distribution. The prediction intervals given in this thesis can also be used for simultaneous hypothesis testing for the Poisson, negative binomial and binomial distributions.
Resource Type
Date Available
Date Copyright
Date Issued
Degree Level
Degree Name
Degree Field
Degree Grantor
Commencement Year
Advisor
Academic Affiliation
Non-Academic Affiliation
Subject
Rights Statement
Peer Reviewed
Language
Digitization Specifications
  • File scanned at 300 ppi (Monochrome) using ScandAll PRO 1.8.1 on a Fi-6770A in PDF format. CVista PdfCompressor 5.0 was used for pdf compression and textual OCR.
Replaces
Additional Information
  • description.provenance : Approved for entry into archive by Patricia Black(patricia.black@oregonstate.edu) on 2013-11-21T22:09:32Z (GMT) No. of bitstreams: 1 OlsenDaleE1974.pdf: 954355 bytes, checksum: f0a000ddac8e0077a805956fd0e77d5f (MD5)
  • description.provenance : Made available in DSpace on 2013-11-22T21:55:09Z (GMT). No. of bitstreams: 1 OlsenDaleE1974.pdf: 954355 bytes, checksum: f0a000ddac8e0077a805956fd0e77d5f (MD5) Previous issue date: 1973-07-19
  • description.provenance : Approved for entry into archive by Kirsten Clark(kcscannerosu@gmail.com) on 2013-11-22T21:55:09Z (GMT) No. of bitstreams: 1 OlsenDaleE1974.pdf: 954355 bytes, checksum: f0a000ddac8e0077a805956fd0e77d5f (MD5)
  • description.provenance : Submitted by Madison Medley (mmscannerosu@gmail.com) on 2013-11-21T19:58:31Z No. of bitstreams: 1 OlsenDaleE1974.pdf: 954355 bytes, checksum: f0a000ddac8e0077a805956fd0e77d5f (MD5)

Relationships

In Administrative Set:
Last modified: 08/07/2017

Downloadable Content

Download PDF
Citations:

EndNote | Zotero | Mendeley

Items