Resilience of large river basins : applying social-ecological systems theory, conflict management, and collaboration on the Mekong and Columbia Basins Public Deposited

http://ir.library.oregonstate.edu/concern/graduate_thesis_or_dissertations/0v838401f

Descriptions

Attribute NameValues
Creator
Abstract or Summary
  • River basins provide essential services for both humans and ecosystems. Understanding the connections between ecosystems and society and their function has been at the heart of resilience studies and has become an increasing important endeavor in research and practice. In this dissertation, I define basin resilience as a river basin system's capacity to absorb, manage, and adapt to biophysical, social-economic, and political changes (or stressors) while still maintaining its essential structure, feedbacks, and functional integrity. I address the question of resilience, scale, and development in the Mekong and Columbia River Basins. This dissertation answers the following questions: 1) is systems theory an appropriate model to evaluate basin resilience, 2) is the Mekong Basin resilient, 3) are the Mekong and Columbia River Basins resilient across multiple scales, 4) can conflict management and collaborative learning enhance resilience, 5) can a resilience framework be used for basin comparisons, and 6) what lessons can the Mekong basin take from rapid development in the Columbia basin? In Chapter 2, I create and apply a social-ecological systems (SES) model of the Mekong River Basin to assess resilience at sub-basin (provincial), watershed (national), and basin (regional) scales. Feedbacks, thresholds, vulnerability, and adaptive capacity are determined and used as inputs into an overall basin resilience assessment. Drawing upon field work done in the Mekong Basin, Chapter 3 uses Conflict Management and Collaborative Learning processes to address resilience weaknesses across multiple scales in the Mekong Basin. Chapter 4 uses the basin resilience framework to compare the Mekong and Columbia Basins against physical characteristics, development rate, conflict and cooperation, and institutional responses to development projects. In this dissertation I find the Mekong has medium-low basin resilience and that scale is a critical determinant in basin resilience assessments. I find that in this study, vulnerability is inversely proportional to resilience, and low resilience at one scale, for example fisheries in the Tonle Sap Lake in Cambodia, decreases resilience for the entire basin. I find that Cambodia and Lao PDR are the least resilience and Thailand the most resilient countries in the Mekong Basin – Thailand more resilient in some sectors than the Mekong River Commission (MRC). I find that the MRC's conflict management strategy is hampered by a restrictive mandate and weakness in capacity building at tributary and national scales but that Collaborative Learning processes are effective in enhancing resilience at the sub-basin scale. Finally, I demonstrate through the basin comparison that the Mekong has a highly resilient biophysical system and traditionally a resilient institutional system however, the proposed rate of development is unsustainable with trends indicating a significant erosion of resilience. I find the Columbia Basin lacking resilience in fishing, hydropower, and water quality – sectors mitigating the effects of development in the Columbia Basin, manifesting as overall negative trends in cooperation. However, the Columbia shows signs of increasing cooperation due recent inclusion of Tribal Nations in water management. Flexible and inclusive institutional responses to water resource development challenges, in the Mekong to rapid development on the mainstream and in the Columbia to negotiations over renewal of the Columbia River Treaty, are key determinants to whether or not each basin can halt the current negative trends and strengthen basin resilience to face the challenges now and those coming in the future.
Resource Type
Date Available
Date Copyright
Date Issued
Degree Level
Degree Name
Degree Field
Degree Grantor
Commencement Year
Advisor
Committee Member
Academic Affiliation
Non-Academic Affiliation
Keyword
Subject
Rights Statement
Peer Reviewed
Language
Replaces
Additional Information
  • description.provenance : Approved for entry into archive by Laura Wilson(laura.wilson@oregonstate.edu) on 2012-07-26T15:31:04Z (GMT) No. of bitstreams: 3 license_rdf: 21091 bytes, checksum: 6b700a38fb61133bb71e5cac54dd59be (MD5) license_text: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) MacQuarriePatrickR2012.pdf: 12620765 bytes, checksum: bdcafc094bb3cc0d8f1ec4b84e5a81de (MD5)
  • description.provenance : Submitted by Patrick Mac Quarrie (macquarp@onid.orst.edu) on 2012-07-20T23:14:51Z No. of bitstreams: 3 license_rdf: 21091 bytes, checksum: 6b700a38fb61133bb71e5cac54dd59be (MD5) license_text: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) MacQuarriePatrickR2012.pdf: 12620765 bytes, checksum: bdcafc094bb3cc0d8f1ec4b84e5a81de (MD5)
  • description.provenance : Made available in DSpace on 2012-07-26T15:31:04Z (GMT). No. of bitstreams: 3 license_rdf: 21091 bytes, checksum: 6b700a38fb61133bb71e5cac54dd59be (MD5) license_text: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) MacQuarriePatrickR2012.pdf: 12620765 bytes, checksum: bdcafc094bb3cc0d8f1ec4b84e5a81de (MD5) Previous issue date: 2012-07-11
  • description.provenance : Approved for entry into archive by Julie Kurtz(julie.kurtz@oregonstate.edu) on 2012-07-23T18:27:22Z (GMT) No. of bitstreams: 3 license_rdf: 21091 bytes, checksum: 6b700a38fb61133bb71e5cac54dd59be (MD5) license_text: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) MacQuarriePatrickR2012.pdf: 12620765 bytes, checksum: bdcafc094bb3cc0d8f1ec4b84e5a81de (MD5)

Relationships

In Administrative Set:
Last modified: 08/20/2017

Downloadable Content

Download PDF
Citations:

EndNote | Zotero | Mendeley

Items