Topology independent transmission scheduling algorithms in mobile ad hoc networks Public Deposited

http://ir.library.oregonstate.edu/concern/graduate_thesis_or_dissertations/0z7090804

Descriptions

Attribute NameValues
Creator
Abstract or Summary
  • Due to the rapid growth of wireless technology, there has been a growing interest in the capabilities of ad hoc networks connecting mobile phones, PDAs and laptop computers. The distributed and self-configurable capabilities of ad hoc networks make them very attractive for some applications such as tactical communication for military, search and rescue mission, disaster recovery, conferences, lectures, etc. In this thesis, we describe several new time scheduling algorithms for multihop packet radio networks; MaxThrou, MinDelay, ECTS (Energy Conserving Transmission Scheduling) and LA-TSMA (Location-Aided Time-Spread Multiple-Access). The MaxThrou and MinDelay algorithms focus on maximizing the system throughput and minimizing the delay bound by using constant weight codes. In these algorithms, each mobile host is assigned a word from an appropriate constant weight code of length n, distance d and weight w. The host can send a message at the j[superscript th] slot provided the assigned code has a 1 in this j[superscript th] bit. The MaxThrou and MinDelay scheduling algorithms are better than the previously known algorithms in terms of the minimum throughput per node and/or the delay bound. Since most of mobile hosts are operated using the scarce battery, and the battery life is not expected to increase significantly in the near future, energy efficiency is a critical issue in ad hoc networks. The ECTS algorithm conserves the power using strategies that allow the network interface to use the low power sleep mode instead of the idle mode, and also eliminates data collisions by introducing Request-To-Send (RTS) and Clear-To-Send (CTS) control slots. Simulation study shows that the ECTS algorithm outperforms previously known protocols. Due to the increasing popularity of mobile networking systems, the scalability becomes a significant new challenge for ad hoc network protocols. To provide a scalable solution for mobile ad hoc networks, we introduce the LA-TSMA algorithm. Instead of assigning a globally unique TSV to each host as done in previous topology-transparent scheduling algorithms, the proposed algorithm assigns a locally unique TSV to each host. In LA-TSMA, a territory is divided into zones, and the mobile hosts located in different zones can be assigned the same TSV.
Resource Type
Date Available
Date Copyright
Date Issued
Degree Level
Degree Name
Degree Field
Degree Grantor
Commencement Year
Advisor
Committee Member
Academic Affiliation
Non-Academic Affiliation
Subject
Rights Statement
Peer Reviewed
Language
Digitization Specifications
  • File scanned at 300 ppi (Monochrome) using ScandAll PRO 1.8.1 on a Fi-6770A in PDF format. CVista PdfCompressor 4.0 was used for pdf compression and textual OCR.
Replaces
Additional Information
  • description.provenance : Made available in DSpace on 2012-07-17T16:46:46Z (GMT). No. of bitstreams: 1 YounJohn-Hoon2003.pdf: 588625 bytes, checksum: c5ac5c66d63a8267b92d0eaa5b6d5c79 (MD5) Previous issue date: 2002-05-31
  • description.provenance : Submitted by Sergio Trujillo (jstscanner@gmail.com) on 2012-06-28T23:15:58Z No. of bitstreams: 1 YounJohn-Hoon2003.pdf: 588625 bytes, checksum: c5ac5c66d63a8267b92d0eaa5b6d5c79 (MD5)
  • description.provenance : Approved for entry into archive by Patricia Black(patricia.black@oregonstate.edu) on 2012-07-17T16:42:16Z (GMT) No. of bitstreams: 1 YounJohn-Hoon2003.pdf: 588625 bytes, checksum: c5ac5c66d63a8267b92d0eaa5b6d5c79 (MD5)
  • description.provenance : Approved for entry into archive by Patricia Black(patricia.black@oregonstate.edu) on 2012-07-17T16:46:46Z (GMT) No. of bitstreams: 1 YounJohn-Hoon2003.pdf: 588625 bytes, checksum: c5ac5c66d63a8267b92d0eaa5b6d5c79 (MD5)

Relationships

In Administrative Set:
Last modified: 08/20/2017

Downloadable Content

Download PDF
Citations:

EndNote | Zotero | Mendeley

Items