Graduate Thesis Or Dissertation
 

CO₂ Reduction in Microscale-Based Corona Reactor : Experiments and Modeling

Public Deposited

Downloadable Content

Download PDF
https://ir.library.oregonstate.edu/concern/graduate_thesis_or_dissertations/2227mt91w

Descriptions

Attribute NameValues
Creator
Abstract
  • Global warming is becoming an increasingly important environmental concern and CO₂ is considered as the major cause of global warming. Creating useful applications for CO₂ would generate alternatives to merely venting CO₂ to the atmosphere, and decreasing the carbon intensity of human activities. Among various methods of CO₂ utilization, conversion of CO₂ to value-added chemical products is the most attractive. In this study, microtechnology and application of corona discharge are combined and introduced into CO₂ reduction process. Experiments were conducted before the design and manufacture of the microreactor to determine the configuration of the reactor, products of reaction and effect of active volume ratio: (1) it is proved that through-gas corona discharge are much simpler to implement than through-liquid, especially those with high solubility of CO₂; (2) the V-I curve for the corona discharge reactors is characterized by a transition from a high voltage low current (which we call spark discharge) to a low voltage high current state (the corona discharge state), with this transition used as a diagnostic of the reactor operation in the corona discharge mode even when direct observation of the discharge is not practical; (3) the products for the reduction of dry CO₂ are carbon monoxide (CO) and oxygen (O₂), while for the reduction of wet CO₂, methane (CH4) is also formed in addition to these two products; (4) a larger active volume ratio results in higher conversion of CO₂ to products. Based on the experimental results listed above, two multi-discharge microscale-based corona reactors were designed and manufactured. We found that for a needle-to-plate gap of 110μm, at the voltage of 0.840kV and current of 0.62mA, a flow of CO₂ and H₂O mixture (flow rate of CO₂ = 50sccm, CO₂-to-H₂O molar ratio = 1:2) can result in 5.5~6% conversion of CO₂ (with 40~50% conversion within the active volume of the reactor) with energy efficiency of 85~95%. The influence of the three main factors, namely the power applied to the reactor (specific points of the V-I curve used), flow rate of CO₂, and CO₂-to-H₂O molar ratio, on the performance and energy efficiency of the reactor were investigated. It was found that (1) the glow regime (or corona regime) is the optimal operation regime for this process from both conversion and energy efficiency perspectives, with higher current in this regime resulting in higher CO₂ conversion; (2) lower flow rate of CO₂ can result in higher conversion with lower energy efficiency, and conversely, the highest energy efficiency is achieved at the highest flow rate; (3) the conversion of CO₂ increases as the CO₂-to-H₂O molar ratio decreases, but the highest energy efficiency is achieved when this ratio matches the ratio of stoichiometric numbers. A numerical model of the process reflecting the geometry, momentum balance, material balance and kinetics inside the reactor was developed to help understand the chemical reaction process. The reaction scheme was modelled as being driven by the initial cleavage of a CO₂ or H₂O molecule caused by collision with energetic electrons to produce CO+O or OH+H, followed by cascaded spontaneous reactions that yield the products. The reaction kinetics were approached as following pseudo-Arrhenius laws with a pre-exponential term k₀ and an exponential term, but rather than modelling the exponential term as dependent on temperature, the term was modelled as depending on the applied electrical potential in the corona discharge (i.e., rather than dependent on e^(-EA/RT) it was modelled as dependent on e^(-EA/βVF), where β is an effectiveness parameter, V is the applied electrical potential to the discharge, and F is Faraday's constant). A refined parameter n that defines the fraction of CO intermediate that either further fragment or remain as CO in the product stream, termed the kinetic parameter in this work, was also employed. Optimization of the numerical model was applied to extract kinetic parameters for the CO₂ reduction process in the multi-point corona discharge with good agreement between simulated results and experimental data. The values of the final refined parameters were: for the initial dissociation of CO₂, the final values of the refined parameters were k₀,₁ = 3.543±0.071×10¹⁰sec⁻¹ and the electrical potential effectiveness parameter was β₁ = 2.181±0.044×10¹, and for the dissociation of H₂O, the parameters were k₀,₁ = 1.266±0.025×10⁸sec⁻¹, β4 = 8.403±0.168, and the kinetic parameter n = 0.50±0.010.
License
Resource Type
Date Available
Date Issued
Degree Level
Degree Name
Degree Field
Degree Grantor
Commencement Year
Advisor
Committee Member
Academic Affiliation
Non-Academic Affiliation
Subject
Rights Statement
Publisher
Peer Reviewed
Language
Replaces

Relationships

Parents:

This work has no parents.

In Collection:

Items