Graduate Thesis Or Dissertation


Quantified PIRT and uncertainty quantification for computer code validation Public Deposited

Downloadable Content

Download PDF


Attribute NameValues
  • This study is intended to investigate and propose a systematic method for uncertainty quantification for the computer code validation application. Uncertainty quantification has gained more and more attentions in recent years. U.S. Nuclear Regulatory Commission (NRC) requires the use of realistic best estimate (BE) computer code to follow the rigorous Code Scaling, Application and Uncertainty (CSAU) methodology. In CSAU, the Phenomena Identification and Ranking Table (PIRT) was developed to identify important code uncertainty contributors. To support and examine the traditional PIRT with quantified judgments, this study proposes a novel approach, the Quantified PIRT (QPIRT), to identify important code models and parameters for uncertainty quantification. Dimensionless analysis to code field equations to generate dimensionless groups (Π groups) using code simulation results serves as the foundation for QPIRT. Uncertainty quantification using DAKOTA code is proposed in this study based on the sampling approach. Nonparametric statistical theory identifies the fixed number of code run to assure the 95 percent probability and 95 percent confidence in the code uncertainty intervals.
Resource Type
Date Available
Date Copyright
Date Issued
Degree Level
Degree Name
Degree Field
Degree Grantor
Commencement Year
Committee Member
Academic Affiliation
Non-Academic Affiliation
Rights Statement
Peer Reviewed



This work has no parents.

In Collection: