Graduate Thesis Or Dissertation
 

Response of equipment in resilient-friction base isolated structures subjected to ground motion

Public Deposited

Downloadable Content

Download PDF
https://ir.library.oregonstate.edu/concern/graduate_thesis_or_dissertations/2b88qg92x

Descriptions

Attribute NameValues
Creator
Abstract
  • The response of lightweight equipment in structures supported on resilient-friction-base isolators (R-FBI) subjected to harmonic ground motion and various earthquake ground motions is examined. The equipment-structure base system is modeled as a three degree-of-freedom discrete system (SDOF subsystems). An efficient semi-analytical numerical solution procedure for the determination of equipment response is presented. Parametric studies to examine the effects of subsystem frequency (isolator, structure, equipment), subsystem damping, mass ratio, friction coefficient and frequency content of the ground motion on the response of the equipment are performed. The equipment response on a fixed-base structure subjected to ground motion is also calculated. Friction type isolation devices can induce high frequency effects in the isolated structure due to the stick-slip action. These effects on equipment response are examined. The results show that the high frequency effect in the structure generated from a friction-type base isolator doesn't, in general, cause amplifications in the response. The R-FBI system appears to be an effective aseismic base isolator for protecting both the structure and sensitive internal equipment.
Resource Type
Date Available
Date Issued
Degree Level
Degree Name
Degree Field
Degree Grantor
Commencement Year
Advisor
Academic Affiliation
Non-Academic Affiliation
Subject
Rights Statement
Publisher
Peer Reviewed
Language
Digitization Specifications
  • File scanned at 300 ppi (Monochrome) using ScandAll PRO 1.8.1 on a Fi-6770A in PDF format. CVista PdfCompressor 5.0 was used for pdf compression and textual OCR.
Replaces
Accessibility Feature

Relationships

Parents:

This work has no parents.

In Collection:

Items