Graduate Thesis Or Dissertation
 

Characterization of organic light-emitting devices

Public Deposited

Downloadable Content

Download PDF
https://ir.library.oregonstate.edu/concern/graduate_thesis_or_dissertations/7p88ck38w

Descriptions

Attribute NameValues
Creator
Abstract
  • In this thesis steady-state (i.e. steady-state with respect to the applied voltage waveform) transient current-transient voltage [i(t)-v(t)], transient brightness-transient current [b(t)-i(t)], transient brightness-transient voltage [b(t)-v(t)], transient current [i(t)], transient brightness [b(t)], and detrapped charge analysis are introduced as novel organic light emitting device (OLED) characterization methods. These analysis methods involve measurement of the instantaneous voltage [v(t)] across, the instantaneous current [i(t)] through, and the instantaneous brightness [b(t)] from an OLED when it is subjected to a bipolar, piecewise-linear applied voltage waveform. The utility of these characterization methods is demonstrated via comparison of different types of OLEDs and polymer light emitting devices (PLEDs) and from a preliminary study of OLED aging. Some of the device parameters obtained from these characterization methods include: OLED capacitance, accumulated charge, electron transport layer (ETL) thickness, hole transport layer (HTL) thickness, OLED thickness, parallel resistance, and series resistance. A current bump observed in i(t)-v(t) curves is attributed to the removal of accumulated hole charge from the ETL/HTL interface and is only observed in heterojunctions (i.e. OLEDs), not in single-layer devices (i.e. PLEDs). Using the characterization methods developed in this thesis, two important OLED device physics conclusions are obtained: (1) Hole accumulation at the ETL/HTL interface plays an important role in establishing balanced charge injection of electrons and holes into the OLED. (2) The ETL behaves as a leaky insulator while the HTL more efficiently conducts charge and acts as a voltage-dependent resistor. A preliminary investigation of the aging properties of OLEDs is presented as further evidence of the utility of the novel characterization methods developed in this thesis. In general, aging is characterized by a softer turn on of the forward bias portions of i(t)-v(t) and b(t)-v(t) curves. Also, some aging recovery is possible if the OLEDs are subjected to a zero or reverse bias.
Resource Type
Date Available
Date Issued
Degree Level
Degree Name
Degree Field
Degree Grantor
Commencement Year
Advisor
Academic Affiliation
Non-Academic Affiliation
Subject
Rights Statement
Publisher
Peer Reviewed
Language
Digitization Specifications
  • File scanned at 300 ppi (Monochrome, 8-bit Grayscale) using ScandAll PRO 1.8.1 on a Fi-6670 in PDF format. CVista PdfCompressor 4.0 was used for pdf compression and textual OCR.
Replaces

Relationships

Parents:

This work has no parents.

In Collection:

Items