Graduate Thesis Or Dissertation

 

Efficient Deep Learning Methods for Biomedical Applications Público Deposited

Contenido Descargable

Descargar PDF
https://ir.library.oregonstate.edu/concern/graduate_thesis_or_dissertations/7w62fg398

Header

Attribute Name LabelAttribute Values Label
Creator
Abstract
  • Deep Learning methods have been gaining a lot of significance for various Biomedical applications for diagnosing several types of diseases. Two applications considered here are: 1) Diabetic Retinopathy Detection and 2) ECG signal Classification (or Arrhythmia Detection). Diabetic Retinopathy (DR) is a major cause of blindness in Diabetic patients, and its early detection benefits diagnosis and subsequent treatment methods. In this work, a Convolutional Neural Network (CNN) using VGG-16 model as a pre-trained neural network has been used for fine-tuning, and, thereby classifying the severity of DR. The model also uses several efficient deep learning techniques including data augmentation, batch normalization, learn-rate scheduling etc., on high resolution images to achieve higher levels of accuracy, greater than previously reported works. For ECG signal classification, CWT (Continuous Wavelet Transforms) were used to convert the time series data into scalogram images. These images were then fed into a Convolutional Neural Network which uses GoogLeNet as a pre-trained network. A classification accuracy of about 90% was obtained. Accuracy levels obtained with GoogLeNet were higher than those obtained using other pre-trained networks such as VGG-16 etc.
License Label
Resource Type
Fecha de Emisión
Degree Level
Degree Name
Degree Field
Degree Grantors
Graduation Year
Contributor Advisor
Contributor Committeemember
Academic Affiliation
Declaración de derechos
Publisher
Peerreviewed
Language

Relaciones

Relationships Parent Rows Label

Rows Empty Text

En Collection:

Elementos