Applying higher order asymptotics to mixed linear models Public Deposited

http://ir.library.oregonstate.edu/concern/graduate_thesis_or_dissertations/9593tx87k

Descriptions

Attribute NameValues
Creator
Abstract or Summary
  • Mixed linear models are a time honored method of analyzing correlated data. However, there is still no method of calculating exact confidence intervals or p-values for an arbitrary parameter in any mixed linear model. Instead, researchers must use either specialized approximate and exact tests that have been developed for particular models or rely on likelihood based approximate tests and confidence intervals which may be unreliable in problems with small sample sizes. This thesis develops procedures to improve small sample likelihood based inference in these important models. The first manuscript develops I.M. Skovgaard's modified directed likelihood for mixed linear models and shows how it is a general, accurate, and easy to apply method of improving inference in mixed linear models. In the second manuscript, O.E. Barndorff-Nielsen's approximate modified profile likelihood is applied to mixed linear models. This modified profile likelihood is a sensible generalization of the commonly used residual likelihood and can be applied if either a fixed or a covariance parameter is of interest. The final manuscript discusses how the design of a mixed linear model effects the accuracy of Skovgaard's modified likelihood and suggests a useful decomposition of that statistic.
Resource Type
Date Available
Date Copyright
Date Issued
Degree Level
Degree Name
Degree Field
Degree Grantor
Commencement Year
Advisor
Academic Affiliation
Non-Academic Affiliation
Subject
Rights Statement
Peer Reviewed
Language
Digitization Specifications
  • File scanned at 300 ppi (Monochrome) using Capture Perfect 3.0 on a Canon DR-9050C in PDF format. CVista PdfCompressor 4.0 was used for pdf compression and textual OCR.
Replaces
Additional Information
  • description.provenance : Made available in DSpace on 2012-10-01T18:38:20Z (GMT). No. of bitstreams: 1 LyonsBenjamin1998.pdf: 3302971 bytes, checksum: 27caa50fb2e0305e899c7559a64d8cb5 (MD5) Previous issue date: 1997-10-14
  • description.provenance : Approved for entry into archive by Patricia Black(patricia.black@oregonstate.edu) on 2012-10-01T18:38:20Z (GMT) No. of bitstreams: 1 LyonsBenjamin1998.pdf: 3302971 bytes, checksum: 27caa50fb2e0305e899c7559a64d8cb5 (MD5)
  • description.provenance : Submitted by Erin Clark (ecscannerosu@gmail.com) on 2012-10-01T16:46:02Z No. of bitstreams: 1 LyonsBenjamin1998.pdf: 3302971 bytes, checksum: 27caa50fb2e0305e899c7559a64d8cb5 (MD5)
  • description.provenance : Approved for entry into archive by Patricia Black(patricia.black@oregonstate.edu) on 2012-10-01T18:36:39Z (GMT) No. of bitstreams: 1 LyonsBenjamin1998.pdf: 3302971 bytes, checksum: 27caa50fb2e0305e899c7559a64d8cb5 (MD5)

Relationships

In Administrative Set:
Last modified: 08/09/2017

Downloadable Content

Download PDF
Citations:

EndNote | Zotero | Mendeley

Items