Graduate Thesis Or Dissertation
 

Suppression of sourness in binary and tertiary model mixture solutions

Público Deposited

Conteúdo disponível para baixar

Baixar PDF
https://ir.library.oregonstate.edu/concern/graduate_thesis_or_dissertations/9880vt03s

Descriptions

Attribute NameValues
Creator
Abstract
  • Addition of acids to foods allows for enhanced food safety. Acids are the primary form of defense against microbial contamination in refrigerated foods, while use of acids in conjunction with heat or high hydrostatic pressure processing lowers energy usage resulting in cost reduction. However, addition of acids to food or beverage formulations often reduces palatability due to higher sourness and this has limited the food industry's ability to better utilize them as preservatives. This study was aimed at gaining a better understanding of sourness suppression and its underlying mechanisms so that such limitations might be ultimately overcome. This work was divided into three parts dealing with the suppression of the sourness of citric, lactic and malic acids, as perceived by a trained sensory panel in a) binary mixtures with sugars, b) binary mixtures with salts and c) tertiary mixtures. The results of the first part showed that suppression was not mediated by sugar molarity or weight, but was significantly influenced by its perceived sweetness intensity in most cases. Sucrose and fructose were more effective than glucose in suppressing acid sourness and the data supported a separate receptor site/mechanism for glucose. Suppression was thought to have both central and peripheral components. In binary acid-salt mixtures sodium acetate (NaAc) affected the most sourness reduction, along with the largest concurrent pH increase (above 4.4). Sodium chloride (NaCl) mixtures showed significant suppression without a pH increase. Sodium gluconate (NaGluc) mixtures showed moderate suppression with citric and malic acids with pH increases remaining below 4.4, but showed little effect on lactic acid sourness. Saltiness appeared to drive suppression only in the case of NaCl, while pH change was responsible for reduction of sourness with NaAc and NaGluc. The tertiary trials indicated that a two-component multiple masker was more effective when its components stimulated different (as opposed to similar) receptors/receptor mechanisms in the taste system, irrespective of taste quality. Furthermore, a two-component masker was more effective than each component alone, and both components of a two-component masker did not have to be effective individually for them to function together as an effective multiple masker.
Resource Type
Date Available
Date Issued
Degree Level
Degree Name
Degree Field
Degree Grantor
Commencement Year
Advisor
Academic Affiliation
Non-Academic Affiliation
Subject
Declaração de direitos
Publisher
Peer Reviewed
Language
Digitization Specifications
  • File scanned at 300 ppi (Monochrome) using Scamax Scan+ V.1.0.32.10766 on a Scanmax 412CD by InoTec inPDF format. LuraDocument PDF Compressor V.5.8.71.50 used for pdf compression and textual OCR.
Replaces

Relações

Parents:

This work has no parents.

Em Collection:

Itens