Engineering design and analysis of pipe ramming installations Public Deposited

http://ir.library.oregonstate.edu/concern/graduate_thesis_or_dissertations/9k41zh815

Descriptions

Attribute NameValues
Creator
Abstract or Summary
  • The trenchless technology known as pipe ramming for construction of culverts and buried pipes under roadways or other infrastructure has gained significant popularity due to its cost-effectiveness and ability to alleviate surface disruptions associated with open-cut trenching. Although the experience with pipe ramming is increasing, there has been remarkably little technical guidance available for engineers to appropriately specify aspects of a pipeline or culvert installation, including the planning of feasible layouts, rates of penetration, pipe diameters, and hammers. This research provides a comprehensive engineering framework for evaluation of culvert installations at the planning phase to address the gaps in knowledge associated with pipe ramming. Presently there are no existing and proven techniques for prediction of settlement, vibration, driving stresses, soil resistance to ramming, and drivability for pipe ramming installations. This study has adopted existing drivability, soil resistance, settlement, and vibration prediction models from pipe jacking, microtunneling, and pile driving models and examined their applicability in pipe ramming installations, resulting in new and technology-specific design guidance. The development of this comprehensive engineering guidance is based on engineering calculations empirically tuned using a database of actual performance measurements. Field observations of five production installations and a full-scale experiment were conducted to form the performance database employed to understand the mechanics associated with pipe ramming installations, ranging from vertical ground movements, ground vibrations, and installation performance. Settlement prediction was evaluated using the inverted normal probability distribution based models, and these methods over-estimated the observed settlements close to the center of the pipes and under-estimated settlements at radial distances away from the pipe. A pipe-ramming-specific hyperbolic model was developed for better prediction of the vertical settlement induced by pipe ramming in granular soils. Attenuation of observed pipe ramming-induced vibrations was modeled using a simple semi-empirical approach, and the calibrated model resulted in reasonable predictions of the ground vibrations for granular soils. The static soil resistance to ramming was evaluated using the traditional quasi-static pipe jacking models and the models resulted in inaccurate predictions for instrumented pipe ramming installations. Therefore pipe ramming-specific static soil resistance models were developed for both the face and casing resistance in granular soils. Principles of stress wave theory routinely applied in the drivability analyses for pile foundations were adopted for the evaluation of the dynamic response pipes during ramming. Reliable estimates of the static soil resistance and dynamic soil parameters were obtained through signal matching processes. Data-informed drivability analysis were performed to simulate the magnitude of driving stresses and develop drivability curves which relate the penetration resistance of a given pipe and hammer to the range of static soil resistances. The study culminates in the first comprehensive framework and recommendations for the installation of pipes by ramming, and should help owners, consultants, and contractors to appropriately plan pipe ramming installations.
Resource Type
Date Available
Date Copyright
Date Issued
Degree Level
Degree Name
Degree Field
Degree Grantor
Commencement Year
Advisor
Committee Member
Academic Affiliation
Non-Academic Affiliation
Keyword
Subject
Rights Statement
Peer Reviewed
Language
Replaces
Additional Information
  • description.provenance : Submitted by Tadesse Meskele (meskelet@onid.orst.edu) on 2013-03-13T20:23:49Z No. of bitstreams: 1 MeskeleTadesseT2013.pdf: 68023573 bytes, checksum: 8919a840b0b6f40ca7fcdf22f13d4247 (MD5)
  • description.provenance : Approved for entry into archive by Julie Kurtz(julie.kurtz@oregonstate.edu) on 2013-03-18T18:34:49Z (GMT) No. of bitstreams: 1 MeskeleTadesseT2013.pdf: 68023573 bytes, checksum: 8919a840b0b6f40ca7fcdf22f13d4247 (MD5)
  • description.provenance : Approved for entry into archive by Laura Wilson(laura.wilson@oregonstate.edu) on 2013-03-19T15:57:15Z (GMT) No. of bitstreams: 1 MeskeleTadesseT2013.pdf: 68023573 bytes, checksum: 8919a840b0b6f40ca7fcdf22f13d4247 (MD5)
  • description.provenance : Made available in DSpace on 2013-03-19T15:57:15Z (GMT). No. of bitstreams: 1 MeskeleTadesseT2013.pdf: 68023573 bytes, checksum: 8919a840b0b6f40ca7fcdf22f13d4247 (MD5) Previous issue date: 2013-02-08

Relationships

In Administrative Set:
Last modified: 08/16/2017

Downloadable Content

Download PDF
Citations:

EndNote | Zotero | Mendeley

Items