An iterative solution to the approximation problem of network synthesis Public Deposited

http://ir.library.oregonstate.edu/concern/graduate_thesis_or_dissertations/9k41zh83q

Descriptions

Attribute NameValues
Creator
Abstract or Summary
  • The approximation problem of network synthesis is considered in four parts. First, the problem is identified. Second, the several existing methods of solving this problem are briefly discussed. This discussion is necessary because the well known methods have inherent limitations if they are to be ultimately applied to the other problem of network synthesis, the realization problem. These inherent limitations must be recognized before any new method, which perhaps avoids the limitations, can be devised. The third part is devoted to an iterative method of solving the problem, which requires the use of a digital computer. This method successfully avoids several of the difficulties associated with the other methods. A function of the pole and zero coordinates is established which becomes zero when coincidence between a realizable approximation and an ideal response occurs. It has been found that a modification of Newton's procedure for finding the real root of a polynomial is capable of determining the unknown pole and zero coordinates. The fourth part considers the unsolved questions associated with the iterative method.
Resource Type
Date Available
Date Copyright
Date Issued
Degree Level
Degree Name
Degree Field
Degree Grantor
Commencement Year
Advisor
Academic Affiliation
Non-Academic Affiliation
Subject
Rights Statement
Peer Reviewed
Language
Digitization Specifications
  • File scanned at 300 ppi using ScandAll PRO 1.8.1 on a Fi-6770A in PDF format. CVista PdfCompressor 4.0 was used for pdf compression and textual OCR.
Replaces
Additional Information
  • description.provenance : Rejected by Patricia Black(patricia.black@oregonstate.edu), reason: Replace on 2014-06-16T20:26:38Z (GMT)
  • description.provenance : Made available in DSpace on 2014-06-17T21:17:15Z (GMT). No. of bitstreams: 1 CopleyTerryW1963.pdf: 4241551 bytes, checksum: b93a064459a70d0192cdb587918743b6 (MD5) Previous issue date: 1962-12-10
  • description.provenance : Submitted by Lauren Kaysen (lkscannerosu@gmail.com) on 2014-06-05T23:15:28Z No. of bitstreams: 1 CopleyTerryW1963.pdf: 1501079 bytes, checksum: 4da2def40e5a9708efda1013f358a9d9 (MD5)
  • description.provenance : Approved for entry into archive by Katy Davis(kdscannerosu@gmail.com) on 2014-06-17T21:17:15Z (GMT) No. of bitstreams: 1 CopleyTerryW1963.pdf: 4241551 bytes, checksum: b93a064459a70d0192cdb587918743b6 (MD5)
  • description.provenance : Submitted by Lauren Kaysen (lkscannerosu@gmail.com) on 2014-06-17T17:03:13Z No. of bitstreams: 1 CopleyTerryW1963.pdf: 4241551 bytes, checksum: b93a064459a70d0192cdb587918743b6 (MD5)
  • description.provenance : Approved for entry into archive by Patricia Black(patricia.black@oregonstate.edu) on 2014-06-17T17:31:46Z (GMT) No. of bitstreams: 1 CopleyTerryW1963.pdf: 4241551 bytes, checksum: b93a064459a70d0192cdb587918743b6 (MD5)

Relationships

In Administrative Set:
Last modified: 08/16/2017

Downloadable Content

Download PDF
Citations:

EndNote | Zotero | Mendeley

Items