The water and energy dynamics of an old-growth seasonal temperate rainforest Public Deposited

http://ir.library.oregonstate.edu/concern/graduate_thesis_or_dissertations/bk128d496

Descriptions

Attribute NameValues
Creator
Abstract or Summary
  • In the Pacific Northwest (PNW), concern about the impacts of climate and land cover change on water resources, flood-generating processes, and ecosystem dynamics emphasize the need for a mechanistic understanding of the interactions between forest canopies and hydrological processes. A detailed measurement and modeling program during the 1999 and 2000 hydrologic years characterized hydrological conditions and processes in a 500-600 year old Douglas fir-western hemlock seasonal temperate rainforest. The measurement program included sub-canopy arrays of radiometers, tipping bucket rain gauges, and soil temperature and moisture probes, to supplement a vertical temperature and humidity profile within the forest canopy. Analysis of the precipitation interception characteristics of the canopy indicated that the mean direct throughfall proportion was 0.36, and the mean saturation storage was 3.3 mm. Evaporation from small storms insufficient to saturate the canopy comprised 19% of the net interception loss, and canopy drying and evaporation during rainfall accounted for 47% and 33% of the net loss, respectively. Results of the measurement program were used to modify the Simultaneous Heat and Water (SHAW) model for forested systems. Changes to the model include improved representation of interception dynamics, stomatal conductance, and within-canopy energy transfer processes. The model effectively simulated canopy air and vapor density profiles, snowcover processes, throughfall, soil water content profiles, shallow soil temperatures, and transpiration fluxes for both a calibration period and for an uncalibrated year. Soil warming at bare locations was delayed until most of the snowcover ablated due to the large heat sink associated with the residual snow patches. During the summer, simulated evapotranspiration decreased from a maximum monthly mean of 2.17 mm day⁻¹ in July to 1.34 mm day⁻¹ in September, as a result of declining soil moisture and net radiation. Our results indicate that a relatively simple parameterization of the SHAW model for the vegetation canopy can accurately simulate seasonal hydrologic fluxes in this environment. Application and validation of the model in other forest systems will establish similarities and differences in the interactions of vegetation and hydrology, and assess the sensitivity of other systems to natural and anthropogenic perturbations.
Resource Type
Date Available
Date Copyright
Date Issued
Degree Level
Degree Name
Degree Field
Degree Grantor
Commencement Year
Advisor
Non-Academic Affiliation
Subject
Rights Statement
Peer Reviewed
Language
Digitization Specifications
  • File scanned at 300 ppi (Monochrome, 24-bit Color) using ScandAll PRO 1.8.1 on a Fi-6770A in PDF format. CVista PdfCompressor 4.0 was used for pdf compression and textual OCR.
Replaces
Additional Information
  • description.provenance : Submitted by Kaylee Patterson (kdpscanner@gmail.com) on 2012-08-16T20:34:20Z No. of bitstreams: 1 LinkTimothyE2002.pdf: 3675301 bytes, checksum: f81fc94455c5c364b9d30d4c8926f9ab (MD5)
  • description.provenance : Approved for entry into archive by Patricia Black(patricia.black@oregonstate.edu) on 2012-08-17T21:14:21Z (GMT) No. of bitstreams: 1 LinkTimothyE2002.pdf: 3675301 bytes, checksum: f81fc94455c5c364b9d30d4c8926f9ab (MD5)
  • description.provenance : Approved for entry into archive by Patricia Black(patricia.black@oregonstate.edu) on 2012-08-17T18:20:04Z (GMT) No. of bitstreams: 1 LinkTimothyE2002.pdf: 3675301 bytes, checksum: f81fc94455c5c364b9d30d4c8926f9ab (MD5)
  • description.provenance : Made available in DSpace on 2012-08-17T21:14:21Z (GMT). No. of bitstreams: 1 LinkTimothyE2002.pdf: 3675301 bytes, checksum: f81fc94455c5c364b9d30d4c8926f9ab (MD5) Previous issue date: 2001-10-02

Relationships

In Administrative Set:
Last modified: 08/09/2017

Downloadable Content

Download PDF
Citations:

EndNote | Zotero | Mendeley

Items