Students' Understanding of Complex Numbers in Middle-Division Physics Public Deposited

http://ir.library.oregonstate.edu/concern/graduate_thesis_or_dissertations/bv73c288n

Descriptions

Attribute NameValues
Creator
Abstract or Summary
  • Mathematical sophistication increases rapidly as students transition from lower- to upper-division physics courses. Complex algebra is one of the mathematical tools that is not introduced or used in lower-division physics courses but is pervasive throughout upper-division courses. In this dissertation, I study middle-division physics students' developing fluency with complex number algebra as they transition from lower- to upper-division physics at Oregon State University. Through a baseline study of students' calculation abilities with simple complex number algebra tasks, I find that there are three general categories of difficulties: performing calculations, switching between forms, and appropriately selecting forms to simplify calculations. There are varying degrees of complex number fluency among middle-division physics students, and that some complex number difficulties persist over time, even into upper-division physics courses. Difficulties with circle trigonometry are common among middle-division physics students and contribute to students' difficulties in the three general categories. Student entering the junior year exhibit difficulties determining rectangular and polar coordinates, which suggests that distinguishing between triangle and circle trigonometry is difficult for students. Through interviews with seven students, I confirm that the simultaneous use of triangle and circle trigonometry approaches contributes to difficulties determining correct algebraic representations of complex numbers. Students who choose to isolate approaches---triangle trigonometry, circle trigonometry, Pythagorean theorem, and norm squared---tend to be successful in determining algebraic representations from a geometric representation of a complex number. Isolating an approach requires the coordination of both algebraic and geometric representations of the complex number. The isolation of approach requires that students are able to distinguish between triangle and polar geometry, a productive strategy in translating geometric to algebraic representations. As students translate a geometric complex number representation to several algebraic representations, I identify, describe, and demonstrate students' coordination of four fine grain-size epistemic games. Students' use of the games reflects students' development of problem solving strategies at the middle-division. The goal-oriented games demonstrate essential components of physics problem solving such as recognizing a goal to progress with the task, decisions to narrow the individual's goal, and acknowledgment that a task is complete.
Resource Type
Date Available
Date Copyright
Date Issued
Degree Level
Degree Name
Degree Field
Degree Grantor
Commencement Year
Advisor
Committee Member
Academic Affiliation
Non-Academic Affiliation
Subject
Rights Statement
Peer Reviewed
Language
Replaces
Additional Information
  • description.provenance : Made available in DSpace on 2016-07-01T20:58:26Z (GMT). No. of bitstreams: 1 SmithEmilyM2016.pdf: 79840620 bytes, checksum: ef216e60f0a1365970a86284a4028299 (MD5) Previous issue date: 2016-06-09
  • description.provenance : Approved for entry into archive by Laura Wilson(laura.wilson@oregonstate.edu) on 2016-07-01T20:58:26Z (GMT) No. of bitstreams: 1 SmithEmilyM2016.pdf: 79840620 bytes, checksum: ef216e60f0a1365970a86284a4028299 (MD5)
  • description.provenance : Submitted by Emily Smith (smithe5@onid.orst.edu) on 2016-06-17T20:45:37Z No. of bitstreams: 1 SmithEmilyM2016.pdf: 79840620 bytes, checksum: ef216e60f0a1365970a86284a4028299 (MD5)
  • description.provenance : Approved for entry into archive by Julie Kurtz(julie.kurtz@oregonstate.edu) on 2016-07-01T17:36:30Z (GMT) No. of bitstreams: 1 SmithEmilyM2016.pdf: 79840620 bytes, checksum: ef216e60f0a1365970a86284a4028299 (MD5)

Relationships

In Administrative Set:
Last modified: 08/04/2017

Downloadable Content

Download PDF
Citations:

EndNote | Zotero | Mendeley

Items