Graduate Thesis Or Dissertation

 

Dynamic Composite Load Signature Detection and Classification using Supervised Learning over Disturbance Data Public Deposited

Downloadable Content

Download PDF
https://ir.library.oregonstate.edu/concern/graduate_thesis_or_dissertations/cj82kd07x

Descriptions

Attribute NameValues
Creator
Abstract
  • Load modeling that can accurately represent the dynamic behavior of generators and loads is important in the operation and planning of transmission and distribution systems. Yet, it is a complex subject in power system research communities and electric utilities. The composition of the end-use loads is changing continually based on climate zone, season, and time. The WECC composite load model has been developed recently to better represent Fault Induced Delayed Voltage Recovery (FIDVR) events, which is caused by air-conditioning stalling phenomena. The approach is based on using the information of the load class at the substation level and composition of air-conditioning, induction machines, power electronics, and static loads associated with the load class. Therefore, it is important to be able to identify and classify the load class. This can be accomplished by using machine learning based signature detection since each load class has a unique signature response due to a particular disturbance in the system. The objective of this project is to implement a supervised learning, Artificial Neural Network (ANN), algorithm to detect and classify the composite load signatures in terms of residential, commercial, agriculture, and mixed load class. Furthermore, the process of creating WECC composite load model data, using the Load Model Data Tool (LMDT), to be used in time-domain dynamic simulation (PSS E) is demonstrated. The One-Area Reliability Test System is used for the purpose of demonstration and validation of our proposed methodology. In term of classification accuracy, the classifier gives about 87 percent using standardization for data normalization and Principle Component Analysis (PCA) for feature reduction.
License
Resource Type
Date Available
Date Issued
Degree Level
Degree Name
Degree Field
Degree Grantor
Commencement Year
Advisor
Committee Member
Academic Affiliation
Non-Academic Affiliation
Keyword
Rights Statement
Publisher
Peer Reviewed
Language
Replaces
Additional Information
  • description.provenance : Submitted by Kelly Tray (trayy@oregonstate.edu) on 2017-06-16T01:44:34ZNo. of bitstreams: 2license_rdf: 1536 bytes, checksum: df76b173e7954a20718100d078b240a8 (MD5)TrayKelly2017.pdf: 4194984 bytes, checksum: 252cf26c1b3a7b6de56573ed5b09e7b7 (MD5)
  • description.provenance : Approved for entry into archive by Julie Kurtz(julie.kurtz@oregonstate.edu) on 2017-06-25T00:36:08Z (GMT) No. of bitstreams: 2license_rdf: 1536 bytes, checksum: df76b173e7954a20718100d078b240a8 (MD5)TrayKelly2017.pdf: 4194984 bytes, checksum: 252cf26c1b3a7b6de56573ed5b09e7b7 (MD5)
  • description.provenance : Made available in DSpace on 2017-06-27T21:25:11Z (GMT). No. of bitstreams: 2license_rdf: 1536 bytes, checksum: df76b173e7954a20718100d078b240a8 (MD5)TrayKelly2017.pdf: 4194984 bytes, checksum: 252cf26c1b3a7b6de56573ed5b09e7b7 (MD5) Previous issue date: 2017-06-06
  • description.provenance : Approved for entry into archive by Steven Van Tuyl(steve.vantuyl@oregonstate.edu) on 2017-06-27T21:25:11Z (GMT) No. of bitstreams: 2license_rdf: 1536 bytes, checksum: df76b173e7954a20718100d078b240a8 (MD5)TrayKelly2017.pdf: 4194984 bytes, checksum: 252cf26c1b3a7b6de56573ed5b09e7b7 (MD5)

Relationships

Parents:

This work has no parents.

In Collection:

Items