The inherent optical properties of the oceans: from closure to prediction Public Deposited

http://ir.library.oregonstate.edu/concern/graduate_thesis_or_dissertations/d217qs56v

Descriptions

Attribute NameValues
Creator
Abstract or Summary
  • Precise in situ measurement of the spectral absorption and scattering coefficients in several regions has revealed patterns in the distribution of the inherent optical properties on spatial scales that were previously unobtainable. The precision of the measurements was found to be consistent and unbiased across a variety of oceanic regimes and are therefore useful for studies of radiative transfer. The spectral information obtained during this research was used to define fundamental relationships between the inherent optical properties and the apparent optical properties of the ocean. A multiple band ratio algorithm based on the relationship between the absorption coefficient and the remote sensing reflectance was developed to provide a means to test the optical measurements for closure. A large database of synoptic measurements of the spectral absorption coefficient and the remote sensing reflectance was tested for closure using this algorithm and it was found that radiative transfer works to within instrument accuracy. Furthermore, it was demonstrated that inversion to obtain the absorption coefficient is possible using this algorithm providing that the spectral dependence of the absorption coefficient can be accurately modeled. A model based on the horizontal variability in the vertical structure of the backscattering to absorption ratio was developed to predict the amplitude of an internal wave using the spatial information in the remote sensing reflectance. The results from a combined aircraft and in situ measurement experiment showed that the predicted amplitudes of the internal wave were comparable to the depth fluctuations of the thermocline observed in the in situ temperature profiles. In an effort to aid primary productivity experiments, an empirical model to predict the photosynthetically available radiation light levels from the absorption coefficient profiles at 490 nm was developed based on in situ data collected in the Gulf of California. The model was able to predict the depth of the one percent light level with a standard error of 4 m. This model provides a method to estimate the daytime light levels from nighttime absorption coefficient measurements at 490 nm.
Resource Type
Date Available
Date Copyright
Date Issued
Degree Level
Degree Name
Degree Field
Degree Grantor
Commencement Year
Advisor
Committee Member
Academic Affiliation
Non-Academic Affiliation
Subject
Rights Statement
Peer Reviewed
Language
Digitization Specifications
  • File scanned at 300 ppi (Monochrome, 8-bit Grayscale, 24-bit Color) using ScandAll PRO 1.8.1 on a Fi-6670 in PDF format. CVista PdfCompressor 4.0 was used for pdf compression and textual OCR.
Replaces
Additional Information
  • description.provenance : Approved for entry into archive by Anna Opoien(anna.opoien@oregonstate.edu) on 2011-08-26T22:12:46Z (GMT) No. of bitstreams: 1 BarnardAndrewHeath2001.pdf: 3329425 bytes, checksum: d2a8681ea0c0504fb3007a2a3825ad34 (MD5)
  • description.provenance : Approved for entry into archive by Anna Opoien(anna.opoien@oregonstate.edu) on 2011-08-26T21:14:45Z (GMT) No. of bitstreams: 1 BarnardAndrewHeath2001.pdf: 3329425 bytes, checksum: d2a8681ea0c0504fb3007a2a3825ad34 (MD5)
  • description.provenance : Submitted by Tamera Ontko (toscannerosu@gmail.com) on 2011-08-25T19:05:28Z No. of bitstreams: 1 BarnardAndrewHeath2001.pdf: 3329425 bytes, checksum: d2a8681ea0c0504fb3007a2a3825ad34 (MD5)
  • description.provenance : Made available in DSpace on 2011-08-26T22:12:46Z (GMT). No. of bitstreams: 1 BarnardAndrewHeath2001.pdf: 3329425 bytes, checksum: d2a8681ea0c0504fb3007a2a3825ad34 (MD5) Previous issue date: 2000-12-18

Relationships

In Administrative Set:
Last modified: 08/15/2017

Downloadable Content

Download PDF
Citations:

EndNote | Zotero | Mendeley

Items