Graduate Thesis Or Dissertation

 

Alkali-silica reaction in concrete containing recycled concrete aggregates Public Deposited

Downloadable Content

Download PDF
https://ir.library.oregonstate.edu/concern/graduate_thesis_or_dissertations/dz010s63h

Descriptions

Attribute NameValues
Creator
Abstract
  • Using recycled concrete aggregate (RCA) as a replacement for natural aggregate in new concrete is a promising way to increase the overall sustainability of new concrete. This has been hindered, however, by a general perception that RCA is a sub-standard material due to the lack of technical guidance, specifically related to long-term durability, on incorporating RCA into new concrete. The goal of this research project was to determine whether current testing methods could be used to assess the potential alkali-silica reactivity of concrete incorporating RCA. The test methods investigated were ASTM C1260 and ASTM C1567 for assessing natural aggregate susceptibility to alkali-silica reactivity (ASR), and the ability of supplementary cementitious materials (SCMs) to mitigate ASR, respectively. Seven different RCA sources were investigated. It was determined that ASTM C1260 was effective in detecting reactivity but expansion varied based on RCA processing. Depending on the aggregate type and the extent of processing, up to a 100% increase in expansion was observed. Replicate testing was performed at four university laboratories to evaluate repeatability and consistency of results. The authors recommend modification to the mixing and aggregate preparation procedures, when testing the reactivity of RCA using ASTM C 1260. This study also investigated the efficacy of replacing portland cement with supplementary cementitious materials (SCMs), known to mitigate alkali-silica reaction (ASR) in concrete with virgin aggregates, to control ASR in concrete incorporating reactive RCA. The SCMs investigated as part of this study included: fly ash (class F), silica fume, and metakaolin. The results of modified alkali-silica reactivity tests, ASTM C1260 and ASTM C1567 (AMBT), are presented for two different recycled concrete aggregates when using 100% portland cement, binary blends of portland cement and fly ash, and ternary blends of portland cement, fly ash and metakaolin or silica fume. The results indicate that SCMs can effectively mitigate ASR in concrete made with RCA. A 40% replacement of portland cement with class F fly ash was able to reduce expansions to below 0.10% in the AMBT for concrete containing 100% of a highly reactive recycled concrete aggregate. A ternary blend, however, of portland cement with a class F fly ash and metakaolin was most effective for both RCAs tested in this study. Higher levels of mitigation may be required for some RCAs, compared to the level required to mitigate ASR in concrete made with their original natural aggregates, depending on the age and composition of the RCA.
Resource Type
Date Available
Date Copyright
Date Issued
Degree Level
Degree Name
Degree Field
Degree Grantor
Commencement Year
Advisor
Committee Member
Academic Affiliation
Non-Academic Affiliation
Keyword
Subject
Rights Statement
Peer Reviewed
Language
Replaces
Additional Information
  • description.provenance : Submitted by Matthew Adams (adamsmat@onid.orst.edu) on 2012-02-14T23:08:25Z No. of bitstreams: 3 AdamsMatthewP2012.pdf: 2592863 bytes, checksum: 5105a5889d9f73b23ec0d87080a9ec5a (MD5) license_rdf: 21091 bytes, checksum: 6b700a38fb61133bb71e5cac54dd59be (MD5) license_text: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
  • description.provenance : Approved for entry into archive by Julie Kurtz(julie.kurtz@oregonstate.edu) on 2012-02-16T17:00:26Z (GMT) No. of bitstreams: 3 AdamsMatthewP2012.pdf: 2592863 bytes, checksum: 5105a5889d9f73b23ec0d87080a9ec5a (MD5) license_rdf: 21091 bytes, checksum: 6b700a38fb61133bb71e5cac54dd59be (MD5) license_text: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
  • description.provenance : Approved for entry into archive by Laura Wilson(laura.wilson@oregonstate.edu) on 2012-02-20T22:01:16Z (GMT) No. of bitstreams: 3 AdamsMatthewP2012.pdf: 2592863 bytes, checksum: 5105a5889d9f73b23ec0d87080a9ec5a (MD5) license_rdf: 21091 bytes, checksum: 6b700a38fb61133bb71e5cac54dd59be (MD5) license_text: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
  • description.provenance : Made available in DSpace on 2012-02-20T22:01:17Z (GMT). No. of bitstreams: 3 AdamsMatthewP2012.pdf: 2592863 bytes, checksum: 5105a5889d9f73b23ec0d87080a9ec5a (MD5) license_rdf: 21091 bytes, checksum: 6b700a38fb61133bb71e5cac54dd59be (MD5) license_text: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2012-01-09

Relationships

Parents:

This work has no parents.

In Collection:

Items