Graduate Thesis Or Dissertation
 

Characterization, chemodynamics and environmental impact assessment of leachates from complex organic materials

Public Deposited

Downloadable Content

Download PDF
https://ir.library.oregonstate.edu/concern/graduate_thesis_or_dissertations/fj236487w

Descriptions

Attribute NameValues
Creator
Abstract
  • More than 65,000 organic chemicals are currently in commercial production with approximately 1000 added each year. Many chemicals are released into the environment as organic mixtures derived from complex hazardous or solid wastes. Of these, more than 1000 chemicals are of environmental concern because of their production quantities, toxicity, persistence, and tendency to bioaccumulate. To manage the impacts of these chemicals to the environment, the environmental chemodynamics of such Complex Organic Mixtures (COMs) or Solid Waste Materials (SWMs) must be predicted accurately. Required information includes the molecular organic composition of SWMs/COMs and/or their leachates, the transport processes and migration in and between the various multimedia environments, chemical and biochemical transformation processes, and effects on the interacting organisms. A technique is developed to predict the potential impact of SWMs/COMs based on the organic chemical composition of the extracts from such complex materials and/or their leachates. In addition, the methodology can be used to estimate the potential hazards of organic pollutants in such complex mixture, ultimate fate and environmental toxicity. This technique consists of three fundamental approaches: characterization and source partitioning, chemodynamics and Environmental Impact Assessment (EIA) models. The characterization and source partitioning model of SWMs/COMs and their leachates are based on their lipid molecular marker (MM) signatures. Chemodynamics (i.e., Fate-Transport) model is based on experiments such as leaching, sorption, volatilization, photolysis, and biodegradation. These experiments are carried out for different SWM leachates and a group of polycyclic aromatic hydrocarbons (PAHs) that are characteristic to the studied leachates. The Environmental Impact Assessment (EIA) model estimates the probability of 96-hr fresh water alga Selenastrum capricornutum chronic toxicity of EPAH-containing SWMs/COMs using a combination of leaching kinetics, equilibrium partitioning, QSPR-QSAR, toxic unit, multicomponent joint toxic effect of mixtures (i.e., additivity, synergism, or antagonism) and dose-response models. The EPAH model is verified by comparing both predicted and observed toxicity in different waste materials. Molecular Connectivity-Quantitative Structure Activity Relationship (MC-QSAR) techniques then are used to develop a predictive model to estimate the concentrations of PAH components in mixtures derived from SWMs/COMs leachates that would jointly cause 50% inhibition of alga Selenastrum capricornutum toxicity.
  • Keywords: Environmental Chemo dynamics, Environmental Pollution, Leschates, Characterization of organic compounds, Environmental Impact Assessment
Resource Type
Date Available
Date Issued
Degree Level
Degree Name
Degree Field
Degree Grantor
Commencement Year
Advisor
Academic Affiliation
Non-Academic Affiliation
Subject
Rights Statement
Publisher
Peer Reviewed
Language
File Format
File Extent
  • 6111833 bytes
Digitization Specifications
  • Master files scanned at 600 ppi (256 Grayscale) using Capture Perfect 3.0 on a Canon DR-9080C in TIF format. PDF derivative scanned at 300 ppi (256 B&W), using Capture Perfect 3.0, on a Canon DR-9080C. CVista PdfCompressor 3.1 was used for pdf compression and textual OCR.
Replaces

Relationships

Parents:

This work has no parents.

In Collection:

Items