Graduate Thesis Or Dissertation
 

Design of high-speed summing circuitry and comparator for adaptive parallel multi-level decision feedback equalization

Public Deposited

Downloadable Content

Download PDF
https://ir.library.oregonstate.edu/concern/graduate_thesis_or_dissertations/g445cg57s

Descriptions

Attribute NameValues
Creator
Abstract
  • Multi-level decision feedback equalization (MDFE) is an effective sampled signal processing technique to remove inter-symbol interference (ISI) from disk read-back signals. Parallelism which doubles the symbol rate can be realized by utilizing the characteristic of channel response and decision feedback equalization algorithm. A mixed-signal IC implementation has been chosen for the parallel MDFE. The differential current signals from the feedback equalizer are subtracted from the forward equalizer output at the summing node to cancel the non-causal ISI. A high-speed comparator with 6 bit resolution is used after the cancellation to detect the signal which contains no ISI. In this thesis, a description of the parallel MDFE structure and decision feedback equalization algorithm are presented. The design of a high-speed summing circuitry and a high-speed comparator are discussed. The same comparator design is used for the flash analog-to-digital converter (ADC) which generates error signals for adaptation.The circuits design and layout were carried out in an HP 1.2-μm n-well CMOS process.
Resource Type
Date Available
Date Issued
Degree Level
Degree Name
Degree Field
Degree Grantor
Commencement Year
Advisor
Committee Member
Academic Affiliation
Non-Academic Affiliation
Subject
Rights Statement
Publisher
Peer Reviewed
Language
Digitization Specifications
  • File scanned at 300 ppi (Monochrome) using ScandAll PRO 1.8.1 on a Fi-6670 in PDF format. CVista PdfCompressor 4.0 was used for pdf compression and textual OCR.
Replaces

Relationships

Parents:

This work has no parents.

In Collection:

Items